#!/usr/bin/env python3 """ Tiny AutoEncoder for Stable Diffusion (DNN for encoding / decoding SD's latent space) """ import torch import torch.nn as nn import comfy.utils import comfy.ops def conv(n_in, n_out, **kwargs): return comfy.ops.disable_weight_init.Conv2d(n_in, n_out, 3, padding=1, **kwargs) class Clamp(nn.Module): def forward(self, x): return torch.tanh(x / 3) * 3 class Block(nn.Module): def __init__(self, n_in, n_out): super().__init__() self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out)) self.skip = comfy.ops.disable_weight_init.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity() self.fuse = nn.ReLU() def forward(self, x): return self.fuse(self.conv(x) + self.skip(x)) def Encoder(latent_channels=4): return nn.Sequential( conv(3, 64), Block(64, 64), conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), conv(64, latent_channels), ) def Decoder(latent_channels=4): return nn.Sequential( Clamp(), conv(latent_channels, 64), nn.ReLU(), Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), Block(64, 64), conv(64, 3), ) class TAESD(nn.Module): latent_magnitude = 3 latent_shift = 0.5 def __init__(self, encoder_path=None, decoder_path=None, latent_channels=4): """Initialize pretrained TAESD on the given device from the given checkpoints.""" super().__init__() self.taesd_encoder = Encoder(latent_channels=latent_channels) self.taesd_decoder = Decoder(latent_channels=latent_channels) self.vae_scale = torch.nn.Parameter(torch.tensor(1.0)) if encoder_path is not None: self.taesd_encoder.load_state_dict(comfy.utils.load_torch_file(encoder_path, safe_load=True)) if decoder_path is not None: self.taesd_decoder.load_state_dict(comfy.utils.load_torch_file(decoder_path, safe_load=True)) @staticmethod def scale_latents(x): """raw latents -> [0, 1]""" return x.div(2 * TAESD.latent_magnitude).add(TAESD.latent_shift).clamp(0, 1) @staticmethod def unscale_latents(x): """[0, 1] -> raw latents""" return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude) def decode(self, x): x_sample = self.taesd_decoder(x * self.vae_scale) x_sample = x_sample.sub(0.5).mul(2) return x_sample def encode(self, x): return self.taesd_encoder(x * 0.5 + 0.5) / self.vae_scale