import torch import torch.nn as nn import torch.nn.functional as F from dataclasses import dataclass from typing import Optional, Any from comfy.ldm.modules.attention import optimized_attention import comfy.model_management import comfy.ldm.common_dit import comfy.model_management @dataclass class Llama2Config: vocab_size: int = 128320 hidden_size: int = 4096 intermediate_size: int = 14336 num_hidden_layers: int = 32 num_attention_heads: int = 32 num_key_value_heads: int = 8 max_position_embeddings: int = 8192 rms_norm_eps: float = 1e-5 rope_theta: float = 500000.0 class RMSNorm(nn.Module): def __init__(self, dim: int, eps: float = 1e-5, device=None, dtype=None): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.empty(dim, device=device, dtype=dtype)) def forward(self, x: torch.Tensor): return comfy.ldm.common_dit.rms_norm(x, self.weight, self.eps) def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def precompute_freqs_cis(head_dim, seq_len, theta, device=None): theta_numerator = torch.arange(0, head_dim, 2, device=device).float() inv_freq = 1.0 / (theta ** (theta_numerator / head_dim)) position_ids = torch.arange(0, seq_len, device=device).unsqueeze(0) inv_freq_expanded = inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() return (cos, sin) def apply_rope(xq, xk, freqs_cis): cos = freqs_cis[0].unsqueeze(1) sin = freqs_cis[1].unsqueeze(1) q_embed = (xq * cos) + (rotate_half(xq) * sin) k_embed = (xk * cos) + (rotate_half(xk) * sin) return q_embed, k_embed class Attention(nn.Module): def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None): super().__init__() self.num_heads = config.num_attention_heads self.num_kv_heads = config.num_key_value_heads self.hidden_size = config.hidden_size self.head_dim = self.hidden_size // self.num_heads ops = ops or nn self.q_proj = ops.Linear(config.hidden_size, config.hidden_size, bias=False, device=device, dtype=dtype) self.k_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False, device=device, dtype=dtype) self.v_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False, device=device, dtype=dtype) self.o_proj = ops.Linear(config.hidden_size, config.hidden_size, bias=False, device=device, dtype=dtype) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, freqs_cis: Optional[torch.Tensor] = None, ): batch_size, seq_length, _ = hidden_states.shape xq = self.q_proj(hidden_states) xk = self.k_proj(hidden_states) xv = self.v_proj(hidden_states) xq = xq.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) xk = xk.view(batch_size, seq_length, self.num_kv_heads, self.head_dim).transpose(1, 2) xv = xv.view(batch_size, seq_length, self.num_kv_heads, self.head_dim).transpose(1, 2) xq, xk = apply_rope(xq, xk, freqs_cis=freqs_cis) xk = xk.repeat_interleave(self.num_heads // self.num_kv_heads, dim=1) xv = xv.repeat_interleave(self.num_heads // self.num_kv_heads, dim=1) output = optimized_attention(xq, xk, xv, self.num_heads, mask=attention_mask, skip_reshape=True) return self.o_proj(output) class MLP(nn.Module): def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None): super().__init__() ops = ops or nn self.gate_proj = ops.Linear(config.hidden_size, config.intermediate_size, bias=False, device=device, dtype=dtype) self.up_proj = ops.Linear(config.hidden_size, config.intermediate_size, bias=False, device=device, dtype=dtype) self.down_proj = ops.Linear(config.intermediate_size, config.hidden_size, bias=False, device=device, dtype=dtype) def forward(self, x): return self.down_proj(F.silu(self.gate_proj(x)) * self.up_proj(x)) class TransformerBlock(nn.Module): def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None): super().__init__() self.self_attn = Attention(config, device=device, dtype=dtype, ops=ops) self.mlp = MLP(config, device=device, dtype=dtype, ops=ops) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, device=device, dtype=dtype) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, device=device, dtype=dtype) def forward( self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, freqs_cis: Optional[torch.Tensor] = None, ): # Self Attention residual = x x = self.input_layernorm(x) x = self.self_attn( hidden_states=x, attention_mask=attention_mask, freqs_cis=freqs_cis, ) x = residual + x # MLP residual = x x = self.post_attention_layernorm(x) x = self.mlp(x) x = residual + x return x class Llama2_(nn.Module): def __init__(self, config, device=None, dtype=None, ops=None): super().__init__() self.config = config self.vocab_size = config.vocab_size self.embed_tokens = ops.Embedding( config.vocab_size, config.hidden_size, device=device, dtype=dtype ) self.layers = nn.ModuleList([ TransformerBlock(config, device=device, dtype=dtype, ops=ops) for _ in range(config.num_hidden_layers) ]) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, device=device, dtype=dtype) # self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype) def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None): x = self.embed_tokens(x, out_dtype=dtype) freqs_cis = precompute_freqs_cis(self.config.hidden_size // self.config.num_attention_heads, x.shape[1], self.config.rope_theta, device=x.device) mask = None if attention_mask is not None: mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]) mask = mask.masked_fill(mask.to(torch.bool), float("-inf")) causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1) if mask is not None: mask += causal_mask else: mask = causal_mask intermediate = None if intermediate_output is not None: if intermediate_output < 0: intermediate_output = len(self.layers) + intermediate_output for i, layer in enumerate(self.layers): x = layer( x=x, attention_mask=mask, freqs_cis=freqs_cis, ) if i == intermediate_output: intermediate = x.clone() x = self.norm(x) if intermediate is not None and final_layer_norm_intermediate: intermediate = self.norm(intermediate) return x, intermediate class Llama2(torch.nn.Module): def __init__(self, config_dict, dtype, device, operations): super().__init__() config = Llama2Config(**config_dict) self.num_layers = config.num_hidden_layers self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) self.dtype = dtype def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, embeddings): self.model.embed_tokens = embeddings def forward(self, input_ids, *args, **kwargs): return self.model(input_ids, *args, **kwargs)