# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The causal continuous video tokenizer with VAE or AE formulation for 3D data..""" import logging import torch from torch import nn from enum import Enum from .cosmos_tokenizer.layers3d import ( EncoderFactorized, DecoderFactorized, CausalConv3d, ) class IdentityDistribution(torch.nn.Module): def __init__(self): super().__init__() def forward(self, parameters): return parameters, (torch.tensor([0.0]), torch.tensor([0.0])) class GaussianDistribution(torch.nn.Module): def __init__(self, min_logvar: float = -30.0, max_logvar: float = 20.0): super().__init__() self.min_logvar = min_logvar self.max_logvar = max_logvar def sample(self, mean, logvar): std = torch.exp(0.5 * logvar) return mean + std * torch.randn_like(mean) def forward(self, parameters): mean, logvar = torch.chunk(parameters, 2, dim=1) logvar = torch.clamp(logvar, self.min_logvar, self.max_logvar) return self.sample(mean, logvar), (mean, logvar) class ContinuousFormulation(Enum): VAE = GaussianDistribution AE = IdentityDistribution class CausalContinuousVideoTokenizer(nn.Module): def __init__( self, z_channels: int, z_factor: int, latent_channels: int, **kwargs ) -> None: super().__init__() self.name = kwargs.get("name", "CausalContinuousVideoTokenizer") self.latent_channels = latent_channels self.sigma_data = 0.5 # encoder_name = kwargs.get("encoder", Encoder3DType.BASE.name) self.encoder = EncoderFactorized( z_channels=z_factor * z_channels, **kwargs ) if kwargs.get("temporal_compression", 4) == 4: kwargs["channels_mult"] = [2, 4] # decoder_name = kwargs.get("decoder", Decoder3DType.BASE.name) self.decoder = DecoderFactorized( z_channels=z_channels, **kwargs ) self.quant_conv = CausalConv3d( z_factor * z_channels, z_factor * latent_channels, kernel_size=1, padding=0, ) self.post_quant_conv = CausalConv3d( latent_channels, z_channels, kernel_size=1, padding=0 ) # formulation_name = kwargs.get("formulation", ContinuousFormulation.AE.name) self.distribution = IdentityDistribution() # ContinuousFormulation[formulation_name].value() num_parameters = sum(param.numel() for param in self.parameters()) logging.info(f"model={self.name}, num_parameters={num_parameters:,}") logging.info( f"z_channels={z_channels}, latent_channels={self.latent_channels}." ) latent_temporal_chunk = 16 self.latent_mean = nn.Parameter(torch.zeros([self.latent_channels * latent_temporal_chunk], dtype=torch.float32)) self.latent_std = nn.Parameter(torch.ones([self.latent_channels * latent_temporal_chunk], dtype=torch.float32)) def encode(self, x): h = self.encoder(x) moments = self.quant_conv(h) z, posteriors = self.distribution(moments) latent_ch = z.shape[1] latent_t = z.shape[2] dtype = z.dtype mean = self.latent_mean.view(latent_ch, -1)[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=dtype, device=z.device) std = self.latent_std.view(latent_ch, -1)[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=dtype, device=z.device) return ((z - mean) / std) * self.sigma_data def decode(self, z): in_dtype = z.dtype latent_ch = z.shape[1] latent_t = z.shape[2] mean = self.latent_mean.view(latent_ch, -1)[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=in_dtype, device=z.device) std = self.latent_std.view(latent_ch, -1)[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=in_dtype, device=z.device) z = z / self.sigma_data z = z * std + mean z = self.post_quant_conv(z) return self.decoder(z)