""" This file is part of ComfyUI. Copyright (C) 2024 Comfy This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . """ import torch import math import struct import comfy.checkpoint_pickle import safetensors.torch import numpy as np from PIL import Image import logging import itertools from torch.nn.functional import interpolate from einops import rearrange def load_torch_file(ckpt, safe_load=False, device=None): if device is None: device = torch.device("cpu") if ckpt.lower().endswith(".safetensors") or ckpt.lower().endswith(".sft"): sd = safetensors.torch.load_file(ckpt, device=device.type) else: if safe_load: if not 'weights_only' in torch.load.__code__.co_varnames: logging.warning("Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely.") safe_load = False if safe_load: pl_sd = torch.load(ckpt, map_location=device, weights_only=True) else: pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle) if "global_step" in pl_sd: logging.debug(f"Global Step: {pl_sd['global_step']}") if "state_dict" in pl_sd: sd = pl_sd["state_dict"] else: if len(pl_sd) == 1: key = list(pl_sd.keys())[0] sd = pl_sd[key] if not isinstance(sd, dict): sd = pl_sd else: sd = pl_sd return sd def save_torch_file(sd, ckpt, metadata=None): if metadata is not None: safetensors.torch.save_file(sd, ckpt, metadata=metadata) else: safetensors.torch.save_file(sd, ckpt) def calculate_parameters(sd, prefix=""): params = 0 for k in sd.keys(): if k.startswith(prefix): w = sd[k] params += w.nelement() return params def weight_dtype(sd, prefix=""): dtypes = {} for k in sd.keys(): if k.startswith(prefix): w = sd[k] dtypes[w.dtype] = dtypes.get(w.dtype, 0) + w.numel() if len(dtypes) == 0: return None return max(dtypes, key=dtypes.get) def state_dict_key_replace(state_dict, keys_to_replace): for x in keys_to_replace: if x in state_dict: state_dict[keys_to_replace[x]] = state_dict.pop(x) return state_dict def state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=False): if filter_keys: out = {} else: out = state_dict for rp in replace_prefix: replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), state_dict.keys()))) for x in replace: w = state_dict.pop(x[0]) out[x[1]] = w return out def transformers_convert(sd, prefix_from, prefix_to, number): keys_to_replace = { "{}positional_embedding": "{}embeddings.position_embedding.weight", "{}token_embedding.weight": "{}embeddings.token_embedding.weight", "{}ln_final.weight": "{}final_layer_norm.weight", "{}ln_final.bias": "{}final_layer_norm.bias", } for k in keys_to_replace: x = k.format(prefix_from) if x in sd: sd[keys_to_replace[k].format(prefix_to)] = sd.pop(x) resblock_to_replace = { "ln_1": "layer_norm1", "ln_2": "layer_norm2", "mlp.c_fc": "mlp.fc1", "mlp.c_proj": "mlp.fc2", "attn.out_proj": "self_attn.out_proj", } for resblock in range(number): for x in resblock_to_replace: for y in ["weight", "bias"]: k = "{}transformer.resblocks.{}.{}.{}".format(prefix_from, resblock, x, y) k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y) if k in sd: sd[k_to] = sd.pop(k) for y in ["weight", "bias"]: k_from = "{}transformer.resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y) if k_from in sd: weights = sd.pop(k_from) shape_from = weights.shape[0] // 3 for x in range(3): p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"] k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y) sd[k_to] = weights[shape_from*x:shape_from*(x + 1)] return sd def clip_text_transformers_convert(sd, prefix_from, prefix_to): sd = transformers_convert(sd, prefix_from, "{}text_model.".format(prefix_to), 32) tp = "{}text_projection.weight".format(prefix_from) if tp in sd: sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp) tp = "{}text_projection".format(prefix_from) if tp in sd: sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp).transpose(0, 1).contiguous() return sd UNET_MAP_ATTENTIONS = { "proj_in.weight", "proj_in.bias", "proj_out.weight", "proj_out.bias", "norm.weight", "norm.bias", } TRANSFORMER_BLOCKS = { "norm1.weight", "norm1.bias", "norm2.weight", "norm2.bias", "norm3.weight", "norm3.bias", "attn1.to_q.weight", "attn1.to_k.weight", "attn1.to_v.weight", "attn1.to_out.0.weight", "attn1.to_out.0.bias", "attn2.to_q.weight", "attn2.to_k.weight", "attn2.to_v.weight", "attn2.to_out.0.weight", "attn2.to_out.0.bias", "ff.net.0.proj.weight", "ff.net.0.proj.bias", "ff.net.2.weight", "ff.net.2.bias", } UNET_MAP_RESNET = { "in_layers.2.weight": "conv1.weight", "in_layers.2.bias": "conv1.bias", "emb_layers.1.weight": "time_emb_proj.weight", "emb_layers.1.bias": "time_emb_proj.bias", "out_layers.3.weight": "conv2.weight", "out_layers.3.bias": "conv2.bias", "skip_connection.weight": "conv_shortcut.weight", "skip_connection.bias": "conv_shortcut.bias", "in_layers.0.weight": "norm1.weight", "in_layers.0.bias": "norm1.bias", "out_layers.0.weight": "norm2.weight", "out_layers.0.bias": "norm2.bias", } UNET_MAP_BASIC = { ("label_emb.0.0.weight", "class_embedding.linear_1.weight"), ("label_emb.0.0.bias", "class_embedding.linear_1.bias"), ("label_emb.0.2.weight", "class_embedding.linear_2.weight"), ("label_emb.0.2.bias", "class_embedding.linear_2.bias"), ("label_emb.0.0.weight", "add_embedding.linear_1.weight"), ("label_emb.0.0.bias", "add_embedding.linear_1.bias"), ("label_emb.0.2.weight", "add_embedding.linear_2.weight"), ("label_emb.0.2.bias", "add_embedding.linear_2.bias"), ("input_blocks.0.0.weight", "conv_in.weight"), ("input_blocks.0.0.bias", "conv_in.bias"), ("out.0.weight", "conv_norm_out.weight"), ("out.0.bias", "conv_norm_out.bias"), ("out.2.weight", "conv_out.weight"), ("out.2.bias", "conv_out.bias"), ("time_embed.0.weight", "time_embedding.linear_1.weight"), ("time_embed.0.bias", "time_embedding.linear_1.bias"), ("time_embed.2.weight", "time_embedding.linear_2.weight"), ("time_embed.2.bias", "time_embedding.linear_2.bias") } def unet_to_diffusers(unet_config): if "num_res_blocks" not in unet_config: return {} num_res_blocks = unet_config["num_res_blocks"] channel_mult = unet_config["channel_mult"] transformer_depth = unet_config["transformer_depth"][:] transformer_depth_output = unet_config["transformer_depth_output"][:] num_blocks = len(channel_mult) transformers_mid = unet_config.get("transformer_depth_middle", None) diffusers_unet_map = {} for x in range(num_blocks): n = 1 + (num_res_blocks[x] + 1) * x for i in range(num_res_blocks[x]): for b in UNET_MAP_RESNET: diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b) num_transformers = transformer_depth.pop(0) if num_transformers > 0: for b in UNET_MAP_ATTENTIONS: diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, b)] = "input_blocks.{}.1.{}".format(n, b) for t in range(num_transformers): for b in TRANSFORMER_BLOCKS: diffusers_unet_map["down_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b) n += 1 for k in ["weight", "bias"]: diffusers_unet_map["down_blocks.{}.downsamplers.0.conv.{}".format(x, k)] = "input_blocks.{}.0.op.{}".format(n, k) i = 0 for b in UNET_MAP_ATTENTIONS: diffusers_unet_map["mid_block.attentions.{}.{}".format(i, b)] = "middle_block.1.{}".format(b) for t in range(transformers_mid): for b in TRANSFORMER_BLOCKS: diffusers_unet_map["mid_block.attentions.{}.transformer_blocks.{}.{}".format(i, t, b)] = "middle_block.1.transformer_blocks.{}.{}".format(t, b) for i, n in enumerate([0, 2]): for b in UNET_MAP_RESNET: diffusers_unet_map["mid_block.resnets.{}.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b) num_res_blocks = list(reversed(num_res_blocks)) for x in range(num_blocks): n = (num_res_blocks[x] + 1) * x l = num_res_blocks[x] + 1 for i in range(l): c = 0 for b in UNET_MAP_RESNET: diffusers_unet_map["up_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "output_blocks.{}.0.{}".format(n, b) c += 1 num_transformers = transformer_depth_output.pop() if num_transformers > 0: c += 1 for b in UNET_MAP_ATTENTIONS: diffusers_unet_map["up_blocks.{}.attentions.{}.{}".format(x, i, b)] = "output_blocks.{}.1.{}".format(n, b) for t in range(num_transformers): for b in TRANSFORMER_BLOCKS: diffusers_unet_map["up_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "output_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b) if i == l - 1: for k in ["weight", "bias"]: diffusers_unet_map["up_blocks.{}.upsamplers.0.conv.{}".format(x, k)] = "output_blocks.{}.{}.conv.{}".format(n, c, k) n += 1 for k in UNET_MAP_BASIC: diffusers_unet_map[k[1]] = k[0] return diffusers_unet_map def swap_scale_shift(weight): shift, scale = weight.chunk(2, dim=0) new_weight = torch.cat([scale, shift], dim=0) return new_weight MMDIT_MAP_BASIC = { ("context_embedder.bias", "context_embedder.bias"), ("context_embedder.weight", "context_embedder.weight"), ("t_embedder.mlp.0.bias", "time_text_embed.timestep_embedder.linear_1.bias"), ("t_embedder.mlp.0.weight", "time_text_embed.timestep_embedder.linear_1.weight"), ("t_embedder.mlp.2.bias", "time_text_embed.timestep_embedder.linear_2.bias"), ("t_embedder.mlp.2.weight", "time_text_embed.timestep_embedder.linear_2.weight"), ("x_embedder.proj.bias", "pos_embed.proj.bias"), ("x_embedder.proj.weight", "pos_embed.proj.weight"), ("y_embedder.mlp.0.bias", "time_text_embed.text_embedder.linear_1.bias"), ("y_embedder.mlp.0.weight", "time_text_embed.text_embedder.linear_1.weight"), ("y_embedder.mlp.2.bias", "time_text_embed.text_embedder.linear_2.bias"), ("y_embedder.mlp.2.weight", "time_text_embed.text_embedder.linear_2.weight"), ("pos_embed", "pos_embed.pos_embed"), ("final_layer.adaLN_modulation.1.bias", "norm_out.linear.bias", swap_scale_shift), ("final_layer.adaLN_modulation.1.weight", "norm_out.linear.weight", swap_scale_shift), ("final_layer.linear.bias", "proj_out.bias"), ("final_layer.linear.weight", "proj_out.weight"), } MMDIT_MAP_BLOCK = { ("context_block.adaLN_modulation.1.bias", "norm1_context.linear.bias"), ("context_block.adaLN_modulation.1.weight", "norm1_context.linear.weight"), ("context_block.attn.proj.bias", "attn.to_add_out.bias"), ("context_block.attn.proj.weight", "attn.to_add_out.weight"), ("context_block.mlp.fc1.bias", "ff_context.net.0.proj.bias"), ("context_block.mlp.fc1.weight", "ff_context.net.0.proj.weight"), ("context_block.mlp.fc2.bias", "ff_context.net.2.bias"), ("context_block.mlp.fc2.weight", "ff_context.net.2.weight"), ("context_block.attn.ln_q.weight", "attn.norm_added_q.weight"), ("context_block.attn.ln_k.weight", "attn.norm_added_k.weight"), ("x_block.adaLN_modulation.1.bias", "norm1.linear.bias"), ("x_block.adaLN_modulation.1.weight", "norm1.linear.weight"), ("x_block.attn.proj.bias", "attn.to_out.0.bias"), ("x_block.attn.proj.weight", "attn.to_out.0.weight"), ("x_block.attn.ln_q.weight", "attn.norm_q.weight"), ("x_block.attn.ln_k.weight", "attn.norm_k.weight"), ("x_block.attn2.proj.bias", "attn2.to_out.0.bias"), ("x_block.attn2.proj.weight", "attn2.to_out.0.weight"), ("x_block.attn2.ln_q.weight", "attn2.norm_q.weight"), ("x_block.attn2.ln_k.weight", "attn2.norm_k.weight"), ("x_block.mlp.fc1.bias", "ff.net.0.proj.bias"), ("x_block.mlp.fc1.weight", "ff.net.0.proj.weight"), ("x_block.mlp.fc2.bias", "ff.net.2.bias"), ("x_block.mlp.fc2.weight", "ff.net.2.weight"), } def mmdit_to_diffusers(mmdit_config, output_prefix=""): key_map = {} depth = mmdit_config.get("depth", 0) num_blocks = mmdit_config.get("num_blocks", depth) for i in range(num_blocks): block_from = "transformer_blocks.{}".format(i) block_to = "{}joint_blocks.{}".format(output_prefix, i) offset = depth * 64 for end in ("weight", "bias"): k = "{}.attn.".format(block_from) qkv = "{}.x_block.attn.qkv.{}".format(block_to, end) key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, offset)) key_map["{}to_k.{}".format(k, end)] = (qkv, (0, offset, offset)) key_map["{}to_v.{}".format(k, end)] = (qkv, (0, offset * 2, offset)) qkv = "{}.context_block.attn.qkv.{}".format(block_to, end) key_map["{}add_q_proj.{}".format(k, end)] = (qkv, (0, 0, offset)) key_map["{}add_k_proj.{}".format(k, end)] = (qkv, (0, offset, offset)) key_map["{}add_v_proj.{}".format(k, end)] = (qkv, (0, offset * 2, offset)) k = "{}.attn2.".format(block_from) qkv = "{}.x_block.attn2.qkv.{}".format(block_to, end) key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, offset)) key_map["{}to_k.{}".format(k, end)] = (qkv, (0, offset, offset)) key_map["{}to_v.{}".format(k, end)] = (qkv, (0, offset * 2, offset)) for k in MMDIT_MAP_BLOCK: key_map["{}.{}".format(block_from, k[1])] = "{}.{}".format(block_to, k[0]) map_basic = MMDIT_MAP_BASIC.copy() map_basic.add(("joint_blocks.{}.context_block.adaLN_modulation.1.bias".format(depth - 1), "transformer_blocks.{}.norm1_context.linear.bias".format(depth - 1), swap_scale_shift)) map_basic.add(("joint_blocks.{}.context_block.adaLN_modulation.1.weight".format(depth - 1), "transformer_blocks.{}.norm1_context.linear.weight".format(depth - 1), swap_scale_shift)) for k in map_basic: if len(k) > 2: key_map[k[1]] = ("{}{}".format(output_prefix, k[0]), None, k[2]) else: key_map[k[1]] = "{}{}".format(output_prefix, k[0]) return key_map def auraflow_to_diffusers(mmdit_config, output_prefix=""): n_double_layers = mmdit_config.get("n_double_layers", 0) n_layers = mmdit_config.get("n_layers", 0) key_map = {} for i in range(n_layers): if i < n_double_layers: index = i prefix_from = "joint_transformer_blocks" prefix_to = "{}double_layers".format(output_prefix) block_map = { "attn.to_q.weight": "attn.w2q.weight", "attn.to_k.weight": "attn.w2k.weight", "attn.to_v.weight": "attn.w2v.weight", "attn.to_out.0.weight": "attn.w2o.weight", "attn.add_q_proj.weight": "attn.w1q.weight", "attn.add_k_proj.weight": "attn.w1k.weight", "attn.add_v_proj.weight": "attn.w1v.weight", "attn.to_add_out.weight": "attn.w1o.weight", "ff.linear_1.weight": "mlpX.c_fc1.weight", "ff.linear_2.weight": "mlpX.c_fc2.weight", "ff.out_projection.weight": "mlpX.c_proj.weight", "ff_context.linear_1.weight": "mlpC.c_fc1.weight", "ff_context.linear_2.weight": "mlpC.c_fc2.weight", "ff_context.out_projection.weight": "mlpC.c_proj.weight", "norm1.linear.weight": "modX.1.weight", "norm1_context.linear.weight": "modC.1.weight", } else: index = i - n_double_layers prefix_from = "single_transformer_blocks" prefix_to = "{}single_layers".format(output_prefix) block_map = { "attn.to_q.weight": "attn.w1q.weight", "attn.to_k.weight": "attn.w1k.weight", "attn.to_v.weight": "attn.w1v.weight", "attn.to_out.0.weight": "attn.w1o.weight", "norm1.linear.weight": "modCX.1.weight", "ff.linear_1.weight": "mlp.c_fc1.weight", "ff.linear_2.weight": "mlp.c_fc2.weight", "ff.out_projection.weight": "mlp.c_proj.weight" } for k in block_map: key_map["{}.{}.{}".format(prefix_from, index, k)] = "{}.{}.{}".format(prefix_to, index, block_map[k]) MAP_BASIC = { ("positional_encoding", "pos_embed.pos_embed"), ("register_tokens", "register_tokens"), ("t_embedder.mlp.0.weight", "time_step_proj.linear_1.weight"), ("t_embedder.mlp.0.bias", "time_step_proj.linear_1.bias"), ("t_embedder.mlp.2.weight", "time_step_proj.linear_2.weight"), ("t_embedder.mlp.2.bias", "time_step_proj.linear_2.bias"), ("cond_seq_linear.weight", "context_embedder.weight"), ("init_x_linear.weight", "pos_embed.proj.weight"), ("init_x_linear.bias", "pos_embed.proj.bias"), ("final_linear.weight", "proj_out.weight"), ("modF.1.weight", "norm_out.linear.weight", swap_scale_shift), } for k in MAP_BASIC: if len(k) > 2: key_map[k[1]] = ("{}{}".format(output_prefix, k[0]), None, k[2]) else: key_map[k[1]] = "{}{}".format(output_prefix, k[0]) return key_map def flux_to_diffusers(mmdit_config, output_prefix=""): n_double_layers = mmdit_config.get("depth", 0) n_single_layers = mmdit_config.get("depth_single_blocks", 0) hidden_size = mmdit_config.get("hidden_size", 0) key_map = {} for index in range(n_double_layers): prefix_from = "transformer_blocks.{}".format(index) prefix_to = "{}double_blocks.{}".format(output_prefix, index) for end in ("weight", "bias"): k = "{}.attn.".format(prefix_from) qkv = "{}.img_attn.qkv.{}".format(prefix_to, end) key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, hidden_size)) key_map["{}to_k.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size)) key_map["{}to_v.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size)) k = "{}.attn.".format(prefix_from) qkv = "{}.txt_attn.qkv.{}".format(prefix_to, end) key_map["{}add_q_proj.{}".format(k, end)] = (qkv, (0, 0, hidden_size)) key_map["{}add_k_proj.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size)) key_map["{}add_v_proj.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size)) block_map = { "attn.to_out.0.weight": "img_attn.proj.weight", "attn.to_out.0.bias": "img_attn.proj.bias", "norm1.linear.weight": "img_mod.lin.weight", "norm1.linear.bias": "img_mod.lin.bias", "norm1_context.linear.weight": "txt_mod.lin.weight", "norm1_context.linear.bias": "txt_mod.lin.bias", "attn.to_add_out.weight": "txt_attn.proj.weight", "attn.to_add_out.bias": "txt_attn.proj.bias", "ff.net.0.proj.weight": "img_mlp.0.weight", "ff.net.0.proj.bias": "img_mlp.0.bias", "ff.net.2.weight": "img_mlp.2.weight", "ff.net.2.bias": "img_mlp.2.bias", "ff_context.net.0.proj.weight": "txt_mlp.0.weight", "ff_context.net.0.proj.bias": "txt_mlp.0.bias", "ff_context.net.2.weight": "txt_mlp.2.weight", "ff_context.net.2.bias": "txt_mlp.2.bias", "attn.norm_q.weight": "img_attn.norm.query_norm.scale", "attn.norm_k.weight": "img_attn.norm.key_norm.scale", "attn.norm_added_q.weight": "txt_attn.norm.query_norm.scale", "attn.norm_added_k.weight": "txt_attn.norm.key_norm.scale", } for k in block_map: key_map["{}.{}".format(prefix_from, k)] = "{}.{}".format(prefix_to, block_map[k]) for index in range(n_single_layers): prefix_from = "single_transformer_blocks.{}".format(index) prefix_to = "{}single_blocks.{}".format(output_prefix, index) for end in ("weight", "bias"): k = "{}.attn.".format(prefix_from) qkv = "{}.linear1.{}".format(prefix_to, end) key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, hidden_size)) key_map["{}to_k.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size)) key_map["{}to_v.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size)) key_map["{}.proj_mlp.{}".format(prefix_from, end)] = (qkv, (0, hidden_size * 3, hidden_size * 4)) block_map = { "norm.linear.weight": "modulation.lin.weight", "norm.linear.bias": "modulation.lin.bias", "proj_out.weight": "linear2.weight", "proj_out.bias": "linear2.bias", "attn.norm_q.weight": "norm.query_norm.scale", "attn.norm_k.weight": "norm.key_norm.scale", } for k in block_map: key_map["{}.{}".format(prefix_from, k)] = "{}.{}".format(prefix_to, block_map[k]) MAP_BASIC = { ("final_layer.linear.bias", "proj_out.bias"), ("final_layer.linear.weight", "proj_out.weight"), ("img_in.bias", "x_embedder.bias"), ("img_in.weight", "x_embedder.weight"), ("time_in.in_layer.bias", "time_text_embed.timestep_embedder.linear_1.bias"), ("time_in.in_layer.weight", "time_text_embed.timestep_embedder.linear_1.weight"), ("time_in.out_layer.bias", "time_text_embed.timestep_embedder.linear_2.bias"), ("time_in.out_layer.weight", "time_text_embed.timestep_embedder.linear_2.weight"), ("txt_in.bias", "context_embedder.bias"), ("txt_in.weight", "context_embedder.weight"), ("vector_in.in_layer.bias", "time_text_embed.text_embedder.linear_1.bias"), ("vector_in.in_layer.weight", "time_text_embed.text_embedder.linear_1.weight"), ("vector_in.out_layer.bias", "time_text_embed.text_embedder.linear_2.bias"), ("vector_in.out_layer.weight", "time_text_embed.text_embedder.linear_2.weight"), ("guidance_in.in_layer.bias", "time_text_embed.guidance_embedder.linear_1.bias"), ("guidance_in.in_layer.weight", "time_text_embed.guidance_embedder.linear_1.weight"), ("guidance_in.out_layer.bias", "time_text_embed.guidance_embedder.linear_2.bias"), ("guidance_in.out_layer.weight", "time_text_embed.guidance_embedder.linear_2.weight"), ("final_layer.adaLN_modulation.1.bias", "norm_out.linear.bias", swap_scale_shift), ("final_layer.adaLN_modulation.1.weight", "norm_out.linear.weight", swap_scale_shift), ("pos_embed_input.bias", "controlnet_x_embedder.bias"), ("pos_embed_input.weight", "controlnet_x_embedder.weight"), } for k in MAP_BASIC: if len(k) > 2: key_map[k[1]] = ("{}{}".format(output_prefix, k[0]), None, k[2]) else: key_map[k[1]] = "{}{}".format(output_prefix, k[0]) return key_map def repeat_to_batch_size(tensor, batch_size, dim=0): if tensor.shape[dim] > batch_size: return tensor.narrow(dim, 0, batch_size) elif tensor.shape[dim] < batch_size: return tensor.repeat(dim * [1] + [math.ceil(batch_size / tensor.shape[dim])] + [1] * (len(tensor.shape) - 1 - dim)).narrow(dim, 0, batch_size) return tensor def resize_to_batch_size(tensor, batch_size): in_batch_size = tensor.shape[0] if in_batch_size == batch_size: return tensor if batch_size <= 1: return tensor[:batch_size] output = torch.empty([batch_size] + list(tensor.shape)[1:], dtype=tensor.dtype, device=tensor.device) if batch_size < in_batch_size: scale = (in_batch_size - 1) / (batch_size - 1) for i in range(batch_size): output[i] = tensor[min(round(i * scale), in_batch_size - 1)] else: scale = in_batch_size / batch_size for i in range(batch_size): output[i] = tensor[min(math.floor((i + 0.5) * scale), in_batch_size - 1)] return output def convert_sd_to(state_dict, dtype): keys = list(state_dict.keys()) for k in keys: state_dict[k] = state_dict[k].to(dtype) return state_dict def safetensors_header(safetensors_path, max_size=100*1024*1024): with open(safetensors_path, "rb") as f: header = f.read(8) length_of_header = struct.unpack(' max_size: return None return f.read(length_of_header) def set_attr(obj, attr, value): attrs = attr.split(".") for name in attrs[:-1]: obj = getattr(obj, name) prev = getattr(obj, attrs[-1]) setattr(obj, attrs[-1], value) return prev def set_attr_param(obj, attr, value): return set_attr(obj, attr, torch.nn.Parameter(value, requires_grad=False)) def copy_to_param(obj, attr, value): # inplace update tensor instead of replacing it attrs = attr.split(".") for name in attrs[:-1]: obj = getattr(obj, name) prev = getattr(obj, attrs[-1]) prev.data.copy_(value) def get_attr(obj, attr): attrs = attr.split(".") for name in attrs: obj = getattr(obj, name) return obj def bislerp(samples, width, height): def slerp(b1, b2, r): '''slerps batches b1, b2 according to ratio r, batches should be flat e.g. NxC''' c = b1.shape[-1] #norms b1_norms = torch.norm(b1, dim=-1, keepdim=True) b2_norms = torch.norm(b2, dim=-1, keepdim=True) #normalize b1_normalized = b1 / b1_norms b2_normalized = b2 / b2_norms #zero when norms are zero b1_normalized[b1_norms.expand(-1,c) == 0.0] = 0.0 b2_normalized[b2_norms.expand(-1,c) == 0.0] = 0.0 #slerp dot = (b1_normalized*b2_normalized).sum(1) omega = torch.acos(dot) so = torch.sin(omega) #technically not mathematically correct, but more pleasing? res = (torch.sin((1.0-r.squeeze(1))*omega)/so).unsqueeze(1)*b1_normalized + (torch.sin(r.squeeze(1)*omega)/so).unsqueeze(1) * b2_normalized res *= (b1_norms * (1.0-r) + b2_norms * r).expand(-1,c) #edge cases for same or polar opposites res[dot > 1 - 1e-5] = b1[dot > 1 - 1e-5] res[dot < 1e-5 - 1] = (b1 * (1.0-r) + b2 * r)[dot < 1e-5 - 1] return res def generate_bilinear_data(length_old, length_new, device): coords_1 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1)) coords_1 = torch.nn.functional.interpolate(coords_1, size=(1, length_new), mode="bilinear") ratios = coords_1 - coords_1.floor() coords_1 = coords_1.to(torch.int64) coords_2 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1)) + 1 coords_2[:,:,:,-1] -= 1 coords_2 = torch.nn.functional.interpolate(coords_2, size=(1, length_new), mode="bilinear") coords_2 = coords_2.to(torch.int64) return ratios, coords_1, coords_2 orig_dtype = samples.dtype samples = samples.float() n,c,h,w = samples.shape h_new, w_new = (height, width) #linear w ratios, coords_1, coords_2 = generate_bilinear_data(w, w_new, samples.device) coords_1 = coords_1.expand((n, c, h, -1)) coords_2 = coords_2.expand((n, c, h, -1)) ratios = ratios.expand((n, 1, h, -1)) pass_1 = samples.gather(-1,coords_1).movedim(1, -1).reshape((-1,c)) pass_2 = samples.gather(-1,coords_2).movedim(1, -1).reshape((-1,c)) ratios = ratios.movedim(1, -1).reshape((-1,1)) result = slerp(pass_1, pass_2, ratios) result = result.reshape(n, h, w_new, c).movedim(-1, 1) #linear h ratios, coords_1, coords_2 = generate_bilinear_data(h, h_new, samples.device) coords_1 = coords_1.reshape((1,1,-1,1)).expand((n, c, -1, w_new)) coords_2 = coords_2.reshape((1,1,-1,1)).expand((n, c, -1, w_new)) ratios = ratios.reshape((1,1,-1,1)).expand((n, 1, -1, w_new)) pass_1 = result.gather(-2,coords_1).movedim(1, -1).reshape((-1,c)) pass_2 = result.gather(-2,coords_2).movedim(1, -1).reshape((-1,c)) ratios = ratios.movedim(1, -1).reshape((-1,1)) result = slerp(pass_1, pass_2, ratios) result = result.reshape(n, h_new, w_new, c).movedim(-1, 1) return result.to(orig_dtype) def lanczos(samples, width, height): images = [Image.fromarray(np.clip(255. * image.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples] images = [image.resize((width, height), resample=Image.Resampling.LANCZOS) for image in images] images = [torch.from_numpy(np.array(image).astype(np.float32) / 255.0).movedim(-1, 0) for image in images] result = torch.stack(images) return result.to(samples.device, samples.dtype) def common_upscale(samples, width, height, upscale_method, crop): orig_shape = tuple(samples.shape) if len(orig_shape) > 4: samples = samples.reshape(samples.shape[0], samples.shape[1], -1, samples.shape[-2], samples.shape[-1]) samples = samples.movedim(2, 1) samples = samples.reshape(-1, orig_shape[1], orig_shape[-2], orig_shape[-1]) if crop == "center": old_width = samples.shape[-1] old_height = samples.shape[-2] old_aspect = old_width / old_height new_aspect = width / height x = 0 y = 0 if old_aspect > new_aspect: x = round((old_width - old_width * (new_aspect / old_aspect)) / 2) elif old_aspect < new_aspect: y = round((old_height - old_height * (old_aspect / new_aspect)) / 2) s = samples.narrow(-2, y, old_height - y * 2).narrow(-1, x, old_width - x * 2) else: s = samples if upscale_method == "bislerp": out = bislerp(s, width, height) elif upscale_method == "lanczos": out = lanczos(s, width, height) else: out = torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method) if len(orig_shape) == 4: return out out = out.reshape((orig_shape[0], -1, orig_shape[1]) + (height, width)) return out.movedim(2, 1).reshape(orig_shape[:-2] + (height, width)) def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap): rows = 1 if height <= tile_y else math.ceil((height - overlap) / (tile_y - overlap)) cols = 1 if width <= tile_x else math.ceil((width - overlap) / (tile_x - overlap)) return rows * cols @torch.inference_mode() def tiled_scale_multidim(samples, function, tile=(64, 64), overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None): dims = len(tile) if not (isinstance(upscale_amount, (tuple, list))): upscale_amount = [upscale_amount] * dims if not (isinstance(overlap, (tuple, list))): overlap = [overlap] * dims def get_upscale(dim, val): up = upscale_amount[dim] if callable(up): return up(val) else: return up * val def mult_list_upscale(a): out = [] for i in range(len(a)): out.append(round(get_upscale(i, a[i]))) return out output = torch.empty([samples.shape[0], out_channels] + mult_list_upscale(samples.shape[2:]), device=output_device) for b in range(samples.shape[0]): s = samples[b:b+1] # handle entire input fitting in a single tile if all(s.shape[d+2] <= tile[d] for d in range(dims)): output[b:b+1] = function(s).to(output_device) if pbar is not None: pbar.update(1) continue out = torch.zeros([s.shape[0], out_channels] + mult_list_upscale(s.shape[2:]), device=output_device) out_div = torch.zeros([s.shape[0], out_channels] + mult_list_upscale(s.shape[2:]), device=output_device) positions = [range(0, s.shape[d+2], tile[d] - overlap[d]) if s.shape[d+2] > tile[d] else [0] for d in range(dims)] for it in itertools.product(*positions): s_in = s upscaled = [] for d in range(dims): pos = max(0, min(s.shape[d + 2] - (overlap[d] + 1), it[d])) l = min(tile[d], s.shape[d + 2] - pos) s_in = s_in.narrow(d + 2, pos, l) upscaled.append(round(get_upscale(d, pos))) ps = function(s_in).to(output_device) mask = torch.ones_like(ps) for d in range(2, dims + 2): feather = round(get_upscale(d - 2, overlap[d - 2])) if feather >= mask.shape[d]: continue for t in range(feather): a = (t + 1) / feather mask.narrow(d, t, 1).mul_(a) mask.narrow(d, mask.shape[d] - 1 - t, 1).mul_(a) o = out o_d = out_div for d in range(dims): o = o.narrow(d + 2, upscaled[d], mask.shape[d + 2]) o_d = o_d.narrow(d + 2, upscaled[d], mask.shape[d + 2]) o.add_(ps * mask) o_d.add_(mask) if pbar is not None: pbar.update(1) output[b:b+1] = out/out_div return output def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None): return tiled_scale_multidim(samples, function, (tile_y, tile_x), overlap, upscale_amount, out_channels, output_device, pbar) PROGRESS_BAR_ENABLED = True def set_progress_bar_enabled(enabled): global PROGRESS_BAR_ENABLED PROGRESS_BAR_ENABLED = enabled PROGRESS_BAR_HOOK = None def set_progress_bar_global_hook(function): global PROGRESS_BAR_HOOK PROGRESS_BAR_HOOK = function class ProgressBar: def __init__(self, total): global PROGRESS_BAR_HOOK self.total = total self.current = 0 self.hook = PROGRESS_BAR_HOOK def update_absolute(self, value, total=None, preview=None): if total is not None: self.total = total if value > self.total: value = self.total self.current = value if self.hook is not None: self.hook(self.current, self.total, preview) def update(self, value): self.update_absolute(self.current + value) def reshape_mask(input_mask, output_shape): dims = len(output_shape) - 2 if dims == 1: scale_mode = "linear" if dims == 2: input_mask = input_mask.reshape((-1, 1, input_mask.shape[-2], input_mask.shape[-1])) scale_mode = "bilinear" if dims == 3: if len(input_mask.shape) < 5: input_mask = input_mask.reshape((1, 1, -1, input_mask.shape[-2], input_mask.shape[-1])) scale_mode = "trilinear" mask = torch.nn.functional.interpolate(input_mask, size=output_shape[2:], mode=scale_mode) if mask.shape[1] < output_shape[1]: mask = mask.repeat((1, output_shape[1]) + (1,) * dims)[:,:output_shape[1]] mask = repeat_to_batch_size(mask, output_shape[0]) return mask def upscale_dit_mask(mask: torch.Tensor, img_size_in, img_size_out): hi, wi = img_size_in ho, wo = img_size_out # if it's already the correct size, no need to do anything if (hi, wi) == (ho, wo): return mask if mask.ndim == 2: mask = mask.unsqueeze(0) if mask.ndim != 3: raise ValueError(f"Got a mask of shape {list(mask.shape)}, expected [b, q, k] or [q, k]") txt_tokens = mask.shape[1] - (hi * wi) # quadrants of the mask txt_to_txt = mask[:, :txt_tokens, :txt_tokens] txt_to_img = mask[:, :txt_tokens, txt_tokens:] img_to_img = mask[:, txt_tokens:, txt_tokens:] img_to_txt = mask[:, txt_tokens:, :txt_tokens] # convert to 1d x 2d, interpolate, then back to 1d x 1d txt_to_img = rearrange (txt_to_img, "b t (h w) -> b t h w", h=hi, w=wi) txt_to_img = interpolate(txt_to_img, size=img_size_out, mode="bilinear") txt_to_img = rearrange (txt_to_img, "b t h w -> b t (h w)") # this one is hard because we have to do it twice # convert to 1d x 2d, interpolate, then to 2d x 1d, interpolate, then 1d x 1d img_to_img = rearrange (img_to_img, "b hw (h w) -> b hw h w", h=hi, w=wi) img_to_img = interpolate(img_to_img, size=img_size_out, mode="bilinear") img_to_img = rearrange (img_to_img, "b (hk wk) hq wq -> b (hq wq) hk wk", hk=hi, wk=wi) img_to_img = interpolate(img_to_img, size=img_size_out, mode="bilinear") img_to_img = rearrange (img_to_img, "b (hq wq) hk wk -> b (hk wk) (hq wq)", hq=ho, wq=wo) # convert to 2d x 1d, interpolate, then back to 1d x 1d img_to_txt = rearrange (img_to_txt, "b (h w) t -> b t h w", h=hi, w=wi) img_to_txt = interpolate(img_to_txt, size=img_size_out, mode="bilinear") img_to_txt = rearrange (img_to_txt, "b t h w -> b (h w) t") # reassemble the mask from blocks out = torch.cat([ torch.cat([txt_to_txt, txt_to_img], dim=2), torch.cat([img_to_txt, img_to_img], dim=2)], dim=1 ) return out