# Code from: https://github.com/Alpha-VLLM/Lumina-Image-2.0/blob/main/models/model.py
from __future__ import annotations

from typing import List, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
import comfy.ldm.common_dit

from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, RMSNorm
from comfy.ldm.modules.attention import optimized_attention_masked
from comfy.ldm.flux.layers import EmbedND


def modulate(x, scale):
    return x * (1 + scale.unsqueeze(1))

#############################################################################
#                               Core NextDiT Model                              #
#############################################################################


class JointAttention(nn.Module):
    """Multi-head attention module."""

    def __init__(
        self,
        dim: int,
        n_heads: int,
        n_kv_heads: Optional[int],
        qk_norm: bool,
        operation_settings={},
    ):
        """
        Initialize the Attention module.

        Args:
            dim (int): Number of input dimensions.
            n_heads (int): Number of heads.
            n_kv_heads (Optional[int]): Number of kv heads, if using GQA.

        """
        super().__init__()
        self.n_kv_heads = n_heads if n_kv_heads is None else n_kv_heads
        self.n_local_heads = n_heads
        self.n_local_kv_heads = self.n_kv_heads
        self.n_rep = self.n_local_heads // self.n_local_kv_heads
        self.head_dim = dim // n_heads

        self.qkv = operation_settings.get("operations").Linear(
            dim,
            (n_heads + self.n_kv_heads + self.n_kv_heads) * self.head_dim,
            bias=False,
            device=operation_settings.get("device"),
            dtype=operation_settings.get("dtype"),
        )
        self.out = operation_settings.get("operations").Linear(
            n_heads * self.head_dim,
            dim,
            bias=False,
            device=operation_settings.get("device"),
            dtype=operation_settings.get("dtype"),
        )

        if qk_norm:
            self.q_norm = RMSNorm(self.head_dim, elementwise_affine=True, **operation_settings)
            self.k_norm = RMSNorm(self.head_dim, elementwise_affine=True, **operation_settings)
        else:
            self.q_norm = self.k_norm = nn.Identity()

    @staticmethod
    def apply_rotary_emb(
        x_in: torch.Tensor,
        freqs_cis: torch.Tensor,
    ) -> torch.Tensor:
        """
        Apply rotary embeddings to input tensors using the given frequency
        tensor.

        This function applies rotary embeddings to the given query 'xq' and
        key 'xk' tensors using the provided frequency tensor 'freqs_cis'. The
        input tensors are reshaped as complex numbers, and the frequency tensor
        is reshaped for broadcasting compatibility. The resulting tensors
        contain rotary embeddings and are returned as real tensors.

        Args:
            x_in (torch.Tensor): Query or Key tensor to apply rotary embeddings.
            freqs_cis (torch.Tensor): Precomputed frequency tensor for complex
                exponentials.

        Returns:
            Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor
                and key tensor with rotary embeddings.
        """

        t_ = x_in.reshape(*x_in.shape[:-1], -1, 1, 2)
        t_out = freqs_cis[..., 0] * t_[..., 0] + freqs_cis[..., 1] * t_[..., 1]
        return t_out.reshape(*x_in.shape)

    def forward(
        self,
        x: torch.Tensor,
        x_mask: torch.Tensor,
        freqs_cis: torch.Tensor,
    ) -> torch.Tensor:
        """

        Args:
            x:
            x_mask:
            freqs_cis:

        Returns:

        """
        bsz, seqlen, _ = x.shape

        xq, xk, xv = torch.split(
            self.qkv(x),
            [
                self.n_local_heads * self.head_dim,
                self.n_local_kv_heads * self.head_dim,
                self.n_local_kv_heads * self.head_dim,
            ],
            dim=-1,
        )
        xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
        xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
        xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)

        xq = self.q_norm(xq)
        xk = self.k_norm(xk)

        xq = JointAttention.apply_rotary_emb(xq, freqs_cis=freqs_cis)
        xk = JointAttention.apply_rotary_emb(xk, freqs_cis=freqs_cis)

        n_rep = self.n_local_heads // self.n_local_kv_heads
        if n_rep >= 1:
            xk = xk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
            xv = xv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
        output = optimized_attention_masked(xq.movedim(1, 2), xk.movedim(1, 2), xv.movedim(1, 2), self.n_local_heads, x_mask, skip_reshape=True)

        return self.out(output)


class FeedForward(nn.Module):
    def __init__(
        self,
        dim: int,
        hidden_dim: int,
        multiple_of: int,
        ffn_dim_multiplier: Optional[float],
        operation_settings={},
    ):
        """
        Initialize the FeedForward module.

        Args:
            dim (int): Input dimension.
            hidden_dim (int): Hidden dimension of the feedforward layer.
            multiple_of (int): Value to ensure hidden dimension is a multiple
                of this value.
            ffn_dim_multiplier (float, optional): Custom multiplier for hidden
                dimension. Defaults to None.

        """
        super().__init__()
        # custom dim factor multiplier
        if ffn_dim_multiplier is not None:
            hidden_dim = int(ffn_dim_multiplier * hidden_dim)
        hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)

        self.w1 = operation_settings.get("operations").Linear(
            dim,
            hidden_dim,
            bias=False,
            device=operation_settings.get("device"),
            dtype=operation_settings.get("dtype"),
        )
        self.w2 = operation_settings.get("operations").Linear(
            hidden_dim,
            dim,
            bias=False,
            device=operation_settings.get("device"),
            dtype=operation_settings.get("dtype"),
        )
        self.w3 = operation_settings.get("operations").Linear(
            dim,
            hidden_dim,
            bias=False,
            device=operation_settings.get("device"),
            dtype=operation_settings.get("dtype"),
        )

    # @torch.compile
    def _forward_silu_gating(self, x1, x3):
        return F.silu(x1) * x3

    def forward(self, x):
        return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))


class JointTransformerBlock(nn.Module):
    def __init__(
        self,
        layer_id: int,
        dim: int,
        n_heads: int,
        n_kv_heads: int,
        multiple_of: int,
        ffn_dim_multiplier: float,
        norm_eps: float,
        qk_norm: bool,
        modulation=True,
        operation_settings={},
    ) -> None:
        """
        Initialize a TransformerBlock.

        Args:
            layer_id (int): Identifier for the layer.
            dim (int): Embedding dimension of the input features.
            n_heads (int): Number of attention heads.
            n_kv_heads (Optional[int]): Number of attention heads in key and
                value features (if using GQA), or set to None for the same as
                query.
            multiple_of (int):
            ffn_dim_multiplier (float):
            norm_eps (float):

        """
        super().__init__()
        self.dim = dim
        self.head_dim = dim // n_heads
        self.attention = JointAttention(dim, n_heads, n_kv_heads, qk_norm, operation_settings=operation_settings)
        self.feed_forward = FeedForward(
            dim=dim,
            hidden_dim=4 * dim,
            multiple_of=multiple_of,
            ffn_dim_multiplier=ffn_dim_multiplier,
            operation_settings=operation_settings,
        )
        self.layer_id = layer_id
        self.attention_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
        self.ffn_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)

        self.attention_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
        self.ffn_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)

        self.modulation = modulation
        if modulation:
            self.adaLN_modulation = nn.Sequential(
                nn.SiLU(),
                operation_settings.get("operations").Linear(
                    min(dim, 1024),
                    4 * dim,
                    bias=True,
                    device=operation_settings.get("device"),
                    dtype=operation_settings.get("dtype"),
                ),
            )

    def forward(
        self,
        x: torch.Tensor,
        x_mask: torch.Tensor,
        freqs_cis: torch.Tensor,
        adaln_input: Optional[torch.Tensor]=None,
    ):
        """
        Perform a forward pass through the TransformerBlock.

        Args:
            x (torch.Tensor): Input tensor.
            freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies.

        Returns:
            torch.Tensor: Output tensor after applying attention and
                feedforward layers.

        """
        if self.modulation:
            assert adaln_input is not None
            scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1)

            x = x + gate_msa.unsqueeze(1).tanh() * self.attention_norm2(
                self.attention(
                    modulate(self.attention_norm1(x), scale_msa),
                    x_mask,
                    freqs_cis,
                )
            )
            x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(
                self.feed_forward(
                    modulate(self.ffn_norm1(x), scale_mlp),
                )
            )
        else:
            assert adaln_input is None
            x = x + self.attention_norm2(
                self.attention(
                    self.attention_norm1(x),
                    x_mask,
                    freqs_cis,
                )
            )
            x = x + self.ffn_norm2(
                self.feed_forward(
                    self.ffn_norm1(x),
                )
            )
        return x


class FinalLayer(nn.Module):
    """
    The final layer of NextDiT.
    """

    def __init__(self, hidden_size, patch_size, out_channels, operation_settings={}):
        super().__init__()
        self.norm_final = operation_settings.get("operations").LayerNorm(
            hidden_size,
            elementwise_affine=False,
            eps=1e-6,
            device=operation_settings.get("device"),
            dtype=operation_settings.get("dtype"),
        )
        self.linear = operation_settings.get("operations").Linear(
            hidden_size,
            patch_size * patch_size * out_channels,
            bias=True,
            device=operation_settings.get("device"),
            dtype=operation_settings.get("dtype"),
        )

        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            operation_settings.get("operations").Linear(
                min(hidden_size, 1024),
                hidden_size,
                bias=True,
                device=operation_settings.get("device"),
                dtype=operation_settings.get("dtype"),
            ),
        )

    def forward(self, x, c):
        scale = self.adaLN_modulation(c)
        x = modulate(self.norm_final(x), scale)
        x = self.linear(x)
        return x


class NextDiT(nn.Module):
    """
    Diffusion model with a Transformer backbone.
    """

    def __init__(
        self,
        patch_size: int = 2,
        in_channels: int = 4,
        dim: int = 4096,
        n_layers: int = 32,
        n_refiner_layers: int = 2,
        n_heads: int = 32,
        n_kv_heads: Optional[int] = None,
        multiple_of: int = 256,
        ffn_dim_multiplier: Optional[float] = None,
        norm_eps: float = 1e-5,
        qk_norm: bool = False,
        cap_feat_dim: int = 5120,
        axes_dims: List[int] = (16, 56, 56),
        axes_lens: List[int] = (1, 512, 512),
        image_model=None,
        device=None,
        dtype=None,
        operations=None,
    ) -> None:
        super().__init__()
        self.dtype = dtype
        operation_settings = {"operations": operations, "device": device, "dtype": dtype}
        self.in_channels = in_channels
        self.out_channels = in_channels
        self.patch_size = patch_size

        self.x_embedder = operation_settings.get("operations").Linear(
            in_features=patch_size * patch_size * in_channels,
            out_features=dim,
            bias=True,
            device=operation_settings.get("device"),
            dtype=operation_settings.get("dtype"),
        )

        self.noise_refiner = nn.ModuleList(
            [
                JointTransformerBlock(
                    layer_id,
                    dim,
                    n_heads,
                    n_kv_heads,
                    multiple_of,
                    ffn_dim_multiplier,
                    norm_eps,
                    qk_norm,
                    modulation=True,
                    operation_settings=operation_settings,
                )
                for layer_id in range(n_refiner_layers)
            ]
        )
        self.context_refiner = nn.ModuleList(
            [
                JointTransformerBlock(
                    layer_id,
                    dim,
                    n_heads,
                    n_kv_heads,
                    multiple_of,
                    ffn_dim_multiplier,
                    norm_eps,
                    qk_norm,
                    modulation=False,
                    operation_settings=operation_settings,
                )
                for layer_id in range(n_refiner_layers)
            ]
        )

        self.t_embedder = TimestepEmbedder(min(dim, 1024), **operation_settings)
        self.cap_embedder = nn.Sequential(
            RMSNorm(cap_feat_dim, eps=norm_eps, elementwise_affine=True, **operation_settings),
            operation_settings.get("operations").Linear(
                cap_feat_dim,
                dim,
                bias=True,
                device=operation_settings.get("device"),
                dtype=operation_settings.get("dtype"),
            ),
        )

        self.layers = nn.ModuleList(
            [
                JointTransformerBlock(
                    layer_id,
                    dim,
                    n_heads,
                    n_kv_heads,
                    multiple_of,
                    ffn_dim_multiplier,
                    norm_eps,
                    qk_norm,
                    operation_settings=operation_settings,
                )
                for layer_id in range(n_layers)
            ]
        )
        self.norm_final = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
        self.final_layer = FinalLayer(dim, patch_size, self.out_channels, operation_settings=operation_settings)

        assert (dim // n_heads) == sum(axes_dims)
        self.axes_dims = axes_dims
        self.axes_lens = axes_lens
        self.rope_embedder = EmbedND(dim=dim // n_heads, theta=10000.0, axes_dim=axes_dims)
        self.dim = dim
        self.n_heads = n_heads

    def unpatchify(
        self, x: torch.Tensor, img_size: List[Tuple[int, int]], cap_size: List[int], return_tensor=False
    ) -> List[torch.Tensor]:
        """
        x: (N, T, patch_size**2 * C)
        imgs: (N, H, W, C)
        """
        pH = pW = self.patch_size
        imgs = []
        for i in range(x.size(0)):
            H, W = img_size[i]
            begin = cap_size[i]
            end = begin + (H // pH) * (W // pW)
            imgs.append(
                x[i][begin:end]
                .view(H // pH, W // pW, pH, pW, self.out_channels)
                .permute(4, 0, 2, 1, 3)
                .flatten(3, 4)
                .flatten(1, 2)
            )

        if return_tensor:
            imgs = torch.stack(imgs, dim=0)
        return imgs

    def patchify_and_embed(
        self, x: List[torch.Tensor] | torch.Tensor, cap_feats: torch.Tensor, cap_mask: torch.Tensor, t: torch.Tensor, num_tokens
    ) -> Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], List[int], torch.Tensor]:
        bsz = len(x)
        pH = pW = self.patch_size
        device = x[0].device
        dtype = x[0].dtype

        if cap_mask is not None:
            l_effective_cap_len = cap_mask.sum(dim=1).tolist()
        else:
            l_effective_cap_len = [num_tokens] * bsz

        if cap_mask is not None and not torch.is_floating_point(cap_mask):
            cap_mask = (cap_mask - 1).to(dtype) * torch.finfo(dtype).max

        img_sizes = [(img.size(1), img.size(2)) for img in x]
        l_effective_img_len = [(H // pH) * (W // pW) for (H, W) in img_sizes]

        max_seq_len = max(
            (cap_len+img_len for cap_len, img_len in zip(l_effective_cap_len, l_effective_img_len))
        )
        max_cap_len = max(l_effective_cap_len)
        max_img_len = max(l_effective_img_len)

        position_ids = torch.zeros(bsz, max_seq_len, 3, dtype=torch.int32, device=device)

        for i in range(bsz):
            cap_len = l_effective_cap_len[i]
            img_len = l_effective_img_len[i]
            H, W = img_sizes[i]
            H_tokens, W_tokens = H // pH, W // pW
            assert H_tokens * W_tokens == img_len

            position_ids[i, :cap_len, 0] = torch.arange(cap_len, dtype=torch.int32, device=device)
            position_ids[i, cap_len:cap_len+img_len, 0] = cap_len
            row_ids = torch.arange(H_tokens, dtype=torch.int32, device=device).view(-1, 1).repeat(1, W_tokens).flatten()
            col_ids = torch.arange(W_tokens, dtype=torch.int32, device=device).view(1, -1).repeat(H_tokens, 1).flatten()
            position_ids[i, cap_len:cap_len+img_len, 1] = row_ids
            position_ids[i, cap_len:cap_len+img_len, 2] = col_ids

        freqs_cis = self.rope_embedder(position_ids).movedim(1, 2).to(dtype)

        # build freqs_cis for cap and image individually
        cap_freqs_cis_shape = list(freqs_cis.shape)
        # cap_freqs_cis_shape[1] = max_cap_len
        cap_freqs_cis_shape[1] = cap_feats.shape[1]
        cap_freqs_cis = torch.zeros(*cap_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)

        img_freqs_cis_shape = list(freqs_cis.shape)
        img_freqs_cis_shape[1] = max_img_len
        img_freqs_cis = torch.zeros(*img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)

        for i in range(bsz):
            cap_len = l_effective_cap_len[i]
            img_len = l_effective_img_len[i]
            cap_freqs_cis[i, :cap_len] = freqs_cis[i, :cap_len]
            img_freqs_cis[i, :img_len] = freqs_cis[i, cap_len:cap_len+img_len]

        # refine context
        for layer in self.context_refiner:
            cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis)

        # refine image
        flat_x = []
        for i in range(bsz):
            img = x[i]
            C, H, W = img.size()
            img = img.view(C, H // pH, pH, W // pW, pW).permute(1, 3, 2, 4, 0).flatten(2).flatten(0, 1)
            flat_x.append(img)
        x = flat_x
        padded_img_embed = torch.zeros(bsz, max_img_len, x[0].shape[-1], device=device, dtype=x[0].dtype)
        padded_img_mask = torch.zeros(bsz, max_img_len, dtype=dtype, device=device)
        for i in range(bsz):
            padded_img_embed[i, :l_effective_img_len[i]] = x[i]
            padded_img_mask[i, l_effective_img_len[i]:] = -torch.finfo(dtype).max

        padded_img_embed = self.x_embedder(padded_img_embed)
        padded_img_mask = padded_img_mask.unsqueeze(1)
        for layer in self.noise_refiner:
            padded_img_embed = layer(padded_img_embed, padded_img_mask, img_freqs_cis, t)

        if cap_mask is not None:
            mask = torch.zeros(bsz, max_seq_len, dtype=dtype, device=device)
            mask[:, :max_cap_len] = cap_mask[:, :max_cap_len]
        else:
            mask = None

        padded_full_embed = torch.zeros(bsz, max_seq_len, self.dim, device=device, dtype=x[0].dtype)
        for i in range(bsz):
            cap_len = l_effective_cap_len[i]
            img_len = l_effective_img_len[i]

            padded_full_embed[i, :cap_len] = cap_feats[i, :cap_len]
            padded_full_embed[i, cap_len:cap_len+img_len] = padded_img_embed[i, :img_len]

        return padded_full_embed, mask, img_sizes, l_effective_cap_len, freqs_cis

    # def forward(self, x, t, cap_feats, cap_mask):
    def forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs):
        t = 1.0 - timesteps
        cap_feats = context
        cap_mask = attention_mask
        bs, c, h, w = x.shape
        x = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
        """
        Forward pass of NextDiT.
        t: (N,) tensor of diffusion timesteps
        y: (N,) tensor of text tokens/features
        """

        t = self.t_embedder(t, dtype=x.dtype)  # (N, D)
        adaln_input = t

        cap_feats = self.cap_embedder(cap_feats)  # (N, L, D)  # todo check if able to batchify w.o. redundant compute

        x_is_tensor = isinstance(x, torch.Tensor)
        x, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens)
        freqs_cis = freqs_cis.to(x.device)

        for layer in self.layers:
            x = layer(x, mask, freqs_cis, adaln_input)

        x = self.final_layer(x, adaln_input)
        x = self.unpatchify(x, img_size, cap_size, return_tensor=x_is_tensor)[:,:,:h,:w]

        return -x