import psutil from enum import Enum from comfy.cli_args import args import torch class VRAMState(Enum): DISABLED = 0 #No vram present: no need to move models to vram NO_VRAM = 1 #Very low vram: enable all the options to save vram LOW_VRAM = 2 NORMAL_VRAM = 3 HIGH_VRAM = 4 SHARED = 5 #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both. class CPUState(Enum): GPU = 0 CPU = 1 MPS = 2 # Determine VRAM State vram_state = VRAMState.NORMAL_VRAM set_vram_to = VRAMState.NORMAL_VRAM cpu_state = CPUState.GPU total_vram = 0 lowvram_available = True xpu_available = False directml_enabled = False if args.directml is not None: import torch_directml directml_enabled = True device_index = args.directml if device_index < 0: directml_device = torch_directml.device() else: directml_device = torch_directml.device(device_index) print("Using directml with device:", torch_directml.device_name(device_index)) # torch_directml.disable_tiled_resources(True) lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default. try: import intel_extension_for_pytorch as ipex if torch.xpu.is_available(): xpu_available = True except: pass try: if torch.backends.mps.is_available(): cpu_state = CPUState.MPS except: pass if args.cpu: cpu_state = CPUState.CPU def get_torch_device(): global xpu_available global directml_enabled global cpu_state if directml_enabled: global directml_device return directml_device if cpu_state == CPUState.MPS: return torch.device("mps") if cpu_state == CPUState.CPU: return torch.device("cpu") else: if xpu_available: return torch.device("xpu") else: return torch.device(torch.cuda.current_device()) def get_total_memory(dev=None, torch_total_too=False): global xpu_available global directml_enabled if dev is None: dev = get_torch_device() if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): mem_total = psutil.virtual_memory().total mem_total_torch = mem_total else: if directml_enabled: mem_total = 1024 * 1024 * 1024 #TODO mem_total_torch = mem_total elif xpu_available: mem_total = torch.xpu.get_device_properties(dev).total_memory mem_total_torch = mem_total else: stats = torch.cuda.memory_stats(dev) mem_reserved = stats['reserved_bytes.all.current'] _, mem_total_cuda = torch.cuda.mem_get_info(dev) mem_total_torch = mem_reserved mem_total = mem_total_cuda if torch_total_too: return (mem_total, mem_total_torch) else: return mem_total total_vram = get_total_memory(get_torch_device()) / (1024 * 1024) total_ram = psutil.virtual_memory().total / (1024 * 1024) print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram)) if not args.normalvram and not args.cpu: if lowvram_available and total_vram <= 4096: print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram") set_vram_to = VRAMState.LOW_VRAM elif total_vram > total_ram * 1.1 and total_vram > 14336: print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram") vram_state = VRAMState.HIGH_VRAM try: OOM_EXCEPTION = torch.cuda.OutOfMemoryError except: OOM_EXCEPTION = Exception XFORMERS_VERSION = "" XFORMERS_ENABLED_VAE = True if args.disable_xformers: XFORMERS_IS_AVAILABLE = False else: try: import xformers import xformers.ops XFORMERS_IS_AVAILABLE = True try: XFORMERS_VERSION = xformers.version.__version__ print("xformers version:", XFORMERS_VERSION) if XFORMERS_VERSION.startswith("0.0.18"): print() print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.") print("Please downgrade or upgrade xformers to a different version.") print() XFORMERS_ENABLED_VAE = False except: pass except: XFORMERS_IS_AVAILABLE = False def is_nvidia(): global cpu_state if cpu_state == CPUState.GPU: if torch.version.cuda: return True ENABLE_PYTORCH_ATTENTION = args.use_pytorch_cross_attention if ENABLE_PYTORCH_ATTENTION == False and XFORMERS_IS_AVAILABLE == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False: try: if is_nvidia(): torch_version = torch.version.__version__ if int(torch_version[0]) >= 2: ENABLE_PYTORCH_ATTENTION = True except: pass if ENABLE_PYTORCH_ATTENTION: torch.backends.cuda.enable_math_sdp(True) torch.backends.cuda.enable_flash_sdp(True) torch.backends.cuda.enable_mem_efficient_sdp(True) XFORMERS_IS_AVAILABLE = False if args.lowvram: set_vram_to = VRAMState.LOW_VRAM lowvram_available = True elif args.novram: set_vram_to = VRAMState.NO_VRAM elif args.highvram or args.gpu_only: vram_state = VRAMState.HIGH_VRAM FORCE_FP32 = False if args.force_fp32: print("Forcing FP32, if this improves things please report it.") FORCE_FP32 = True if lowvram_available: try: import accelerate if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM): vram_state = set_vram_to except Exception as e: import traceback print(traceback.format_exc()) print("ERROR: LOW VRAM MODE NEEDS accelerate.") lowvram_available = False if cpu_state != CPUState.GPU: vram_state = VRAMState.DISABLED if cpu_state == CPUState.MPS: vram_state = VRAMState.SHARED print(f"Set vram state to: {vram_state.name}") def get_torch_device_name(device): if hasattr(device, 'type'): if device.type == "cuda": return "{} {}".format(device, torch.cuda.get_device_name(device)) else: return "{}".format(device.type) else: return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device)) try: print("Device:", get_torch_device_name(get_torch_device())) except: print("Could not pick default device.") current_loaded_model = None current_gpu_controlnets = [] model_accelerated = False def unet_offload_device(): if vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.SHARED: return get_torch_device() else: return torch.device("cpu") def unload_model(): global current_loaded_model global model_accelerated global current_gpu_controlnets global vram_state if current_loaded_model is not None: if model_accelerated: accelerate.hooks.remove_hook_from_submodules(current_loaded_model.model) model_accelerated = False current_loaded_model.model.to(unet_offload_device()) current_loaded_model.model_patches_to(unet_offload_device()) current_loaded_model.unpatch_model() current_loaded_model = None if vram_state != VRAMState.HIGH_VRAM: if len(current_gpu_controlnets) > 0: for n in current_gpu_controlnets: n.cpu() current_gpu_controlnets = [] def load_model_gpu(model): global current_loaded_model global vram_state global model_accelerated if model is current_loaded_model: return unload_model() try: real_model = model.patch_model() except Exception as e: model.unpatch_model() raise e torch_dev = get_torch_device() model.model_patches_to(torch_dev) vram_set_state = vram_state if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM): model_size = model.model_size() current_free_mem = get_free_memory(torch_dev) lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 )) if model_size > (current_free_mem - (512 * 1024 * 1024)): #only switch to lowvram if really necessary vram_set_state = VRAMState.LOW_VRAM current_loaded_model = model if vram_set_state == VRAMState.DISABLED: pass elif vram_set_state == VRAMState.NORMAL_VRAM or vram_set_state == VRAMState.HIGH_VRAM or vram_set_state == VRAMState.SHARED: model_accelerated = False real_model.to(get_torch_device()) else: if vram_set_state == VRAMState.NO_VRAM: device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"}) elif vram_set_state == VRAMState.LOW_VRAM: device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"}) accelerate.dispatch_model(real_model, device_map=device_map, main_device=get_torch_device()) model_accelerated = True return current_loaded_model def load_controlnet_gpu(control_models): global current_gpu_controlnets global vram_state if vram_state == VRAMState.DISABLED: return if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM: for m in control_models: if hasattr(m, 'set_lowvram'): m.set_lowvram(True) #don't load controlnets like this if low vram because they will be loaded right before running and unloaded right after return models = [] for m in control_models: models += m.get_models() for m in current_gpu_controlnets: if m not in models: m.cpu() device = get_torch_device() current_gpu_controlnets = [] for m in models: current_gpu_controlnets.append(m.to(device)) def load_if_low_vram(model): global vram_state if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM: return model.to(get_torch_device()) return model def unload_if_low_vram(model): global vram_state if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM: return model.cpu() return model def text_encoder_device(): if args.gpu_only: return get_torch_device() else: return torch.device("cpu") def get_autocast_device(dev): if hasattr(dev, 'type'): return dev.type return "cuda" def xformers_enabled(): global xpu_available global directml_enabled global cpu_state if cpu_state != CPUState.GPU: return False if xpu_available: return False if directml_enabled: return False return XFORMERS_IS_AVAILABLE def xformers_enabled_vae(): enabled = xformers_enabled() if not enabled: return False return XFORMERS_ENABLED_VAE def pytorch_attention_enabled(): global ENABLE_PYTORCH_ATTENTION return ENABLE_PYTORCH_ATTENTION def pytorch_attention_flash_attention(): global ENABLE_PYTORCH_ATTENTION if ENABLE_PYTORCH_ATTENTION: #TODO: more reliable way of checking for flash attention? if is_nvidia(): #pytorch flash attention only works on Nvidia return True return False def get_free_memory(dev=None, torch_free_too=False): global xpu_available global directml_enabled if dev is None: dev = get_torch_device() if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): mem_free_total = psutil.virtual_memory().available mem_free_torch = mem_free_total else: if directml_enabled: mem_free_total = 1024 * 1024 * 1024 #TODO mem_free_torch = mem_free_total elif xpu_available: mem_free_total = torch.xpu.get_device_properties(dev).total_memory - torch.xpu.memory_allocated(dev) mem_free_torch = mem_free_total else: stats = torch.cuda.memory_stats(dev) mem_active = stats['active_bytes.all.current'] mem_reserved = stats['reserved_bytes.all.current'] mem_free_cuda, _ = torch.cuda.mem_get_info(dev) mem_free_torch = mem_reserved - mem_active mem_free_total = mem_free_cuda + mem_free_torch if torch_free_too: return (mem_free_total, mem_free_torch) else: return mem_free_total def maximum_batch_area(): global vram_state if vram_state == VRAMState.NO_VRAM: return 0 memory_free = get_free_memory() / (1024 * 1024) if xformers_enabled() or pytorch_attention_flash_attention(): #TODO: this needs to be tweaked area = 20 * memory_free else: #TODO: this formula is because AMD sucks and has memory management issues which might be fixed in the future area = ((memory_free - 1024) * 0.9) / (0.6) return int(max(area, 0)) def cpu_mode(): global cpu_state return cpu_state == CPUState.CPU def mps_mode(): global cpu_state return cpu_state == CPUState.MPS def should_use_fp16(): global xpu_available global directml_enabled if FORCE_FP32: return False if directml_enabled: return False if cpu_mode() or mps_mode() or xpu_available: return False #TODO ? if torch.cuda.is_bf16_supported(): return True props = torch.cuda.get_device_properties("cuda") if props.major < 7: return False #FP32 is faster on those cards? nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600"] for x in nvidia_16_series: if x in props.name: return False return True def soft_empty_cache(): global xpu_available global cpu_state if cpu_state == CPUState.MPS: torch.mps.empty_cache() elif xpu_available: torch.xpu.empty_cache() elif torch.cuda.is_available(): if is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda torch.cuda.empty_cache() torch.cuda.ipc_collect() #TODO: might be cleaner to put this somewhere else import threading class InterruptProcessingException(Exception): pass interrupt_processing_mutex = threading.RLock() interrupt_processing = False def interrupt_current_processing(value=True): global interrupt_processing global interrupt_processing_mutex with interrupt_processing_mutex: interrupt_processing = value def processing_interrupted(): global interrupt_processing global interrupt_processing_mutex with interrupt_processing_mutex: return interrupt_processing def throw_exception_if_processing_interrupted(): global interrupt_processing global interrupt_processing_mutex with interrupt_processing_mutex: if interrupt_processing: interrupt_processing = False raise InterruptProcessingException()