import nodes import node_helpers import torch import comfy.model_management import comfy.utils import comfy.latent_formats import comfy.clip_vision class WanImageToVideo: @classmethod def INPUT_TYPES(s): return {"required": {"positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "vae": ("VAE", ), "width": ("INT", {"default": 832, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), "height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), "length": ("INT", {"default": 81, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}), "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), }, "optional": {"clip_vision_output": ("CLIP_VISION_OUTPUT", ), "start_image": ("IMAGE", ), }} RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") RETURN_NAMES = ("positive", "negative", "latent") FUNCTION = "encode" CATEGORY = "conditioning/video_models" def encode(self, positive, negative, vae, width, height, length, batch_size, start_image=None, clip_vision_output=None): latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) if start_image is not None: start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) image = torch.ones((length, height, width, start_image.shape[-1]), device=start_image.device, dtype=start_image.dtype) * 0.5 image[:start_image.shape[0]] = start_image concat_latent_image = vae.encode(image[:, :, :, :3]) mask = torch.ones((1, 1, latent.shape[2], concat_latent_image.shape[-2], concat_latent_image.shape[-1]), device=start_image.device, dtype=start_image.dtype) mask[:, :, :((start_image.shape[0] - 1) // 4) + 1] = 0.0 positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent_image, "concat_mask": mask}) negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent_image, "concat_mask": mask}) if clip_vision_output is not None: positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output}) negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output}) out_latent = {} out_latent["samples"] = latent return (positive, negative, out_latent) class WanFunControlToVideo: @classmethod def INPUT_TYPES(s): return {"required": {"positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "vae": ("VAE", ), "width": ("INT", {"default": 832, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), "height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), "length": ("INT", {"default": 81, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}), "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), }, "optional": {"clip_vision_output": ("CLIP_VISION_OUTPUT", ), "start_image": ("IMAGE", ), "control_video": ("IMAGE", ), }} RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") RETURN_NAMES = ("positive", "negative", "latent") FUNCTION = "encode" CATEGORY = "conditioning/video_models" def encode(self, positive, negative, vae, width, height, length, batch_size, start_image=None, clip_vision_output=None, control_video=None): latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) concat_latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) concat_latent = comfy.latent_formats.Wan21().process_out(concat_latent) concat_latent = concat_latent.repeat(1, 2, 1, 1, 1) if start_image is not None: start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) concat_latent_image = vae.encode(start_image[:, :, :, :3]) concat_latent[:,16:,:concat_latent_image.shape[2]] = concat_latent_image[:,:,:concat_latent.shape[2]] if control_video is not None: control_video = comfy.utils.common_upscale(control_video[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) concat_latent_image = vae.encode(control_video[:, :, :, :3]) concat_latent[:,:16,:concat_latent_image.shape[2]] = concat_latent_image[:,:,:concat_latent.shape[2]] positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent}) negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent}) if clip_vision_output is not None: positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output}) negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output}) out_latent = {} out_latent["samples"] = latent return (positive, negative, out_latent) class WanFirstLastFrameToVideo: @classmethod def INPUT_TYPES(s): return {"required": {"positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "vae": ("VAE", ), "width": ("INT", {"default": 832, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), "height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), "length": ("INT", {"default": 81, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}), "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), }, "optional": {"clip_vision_start_image": ("CLIP_VISION_OUTPUT", ), "clip_vision_end_image": ("CLIP_VISION_OUTPUT", ), "start_image": ("IMAGE", ), "end_image": ("IMAGE", ), }} RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") RETURN_NAMES = ("positive", "negative", "latent") FUNCTION = "encode" CATEGORY = "conditioning/video_models" def encode(self, positive, negative, vae, width, height, length, batch_size, start_image=None, end_image=None, clip_vision_start_image=None, clip_vision_end_image=None): latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) if start_image is not None: start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) if end_image is not None: end_image = comfy.utils.common_upscale(end_image[-length:].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) image = torch.ones((length, height, width, 3)) * 0.5 mask = torch.ones((1, 1, latent.shape[2] * 4, latent.shape[-2], latent.shape[-1])) if start_image is not None: image[:start_image.shape[0]] = start_image mask[:, :, :start_image.shape[0] + 3] = 0.0 if end_image is not None: image[-end_image.shape[0]:] = end_image mask[:, :, -end_image.shape[0]:] = 0.0 concat_latent_image = vae.encode(image[:, :, :, :3]) mask = mask.view(1, mask.shape[2] // 4, 4, mask.shape[3], mask.shape[4]).transpose(1, 2) positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent_image, "concat_mask": mask}) negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent_image, "concat_mask": mask}) if clip_vision_start_image is not None: clip_vision_output = clip_vision_start_image if clip_vision_end_image is not None: if clip_vision_output is not None: states = torch.cat([clip_vision_output.penultimate_hidden_states, clip_vision_end_image.penultimate_hidden_states], dim=-2) clip_vision_output = comfy.clip_vision.Output() clip_vision_output.penultimate_hidden_states = states else: clip_vision_output = clip_vision_end_image if clip_vision_output is not None: positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output}) negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output}) out_latent = {} out_latent["samples"] = latent return (positive, negative, out_latent) class WanFunInpaintToVideo: @classmethod def INPUT_TYPES(s): return {"required": {"positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "vae": ("VAE", ), "width": ("INT", {"default": 832, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), "height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), "length": ("INT", {"default": 81, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}), "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), }, "optional": {"clip_vision_output": ("CLIP_VISION_OUTPUT", ), "start_image": ("IMAGE", ), "end_image": ("IMAGE", ), }} RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") RETURN_NAMES = ("positive", "negative", "latent") FUNCTION = "encode" CATEGORY = "conditioning/video_models" def encode(self, positive, negative, vae, width, height, length, batch_size, start_image=None, end_image=None, clip_vision_output=None): flfv = WanFirstLastFrameToVideo() return flfv.encode(positive, negative, vae, width, height, length, batch_size, start_image=start_image, end_image=end_image, clip_vision_start_image=clip_vision_output) class WanVaceToVideo: @classmethod def INPUT_TYPES(s): return {"required": {"positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "vae": ("VAE", ), "width": ("INT", {"default": 832, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), "height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), "length": ("INT", {"default": 81, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}), "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1000.0, "step": 0.01}), }, "optional": {"control_video": ("IMAGE", ), "control_masks": ("MASK", ), "reference_image": ("IMAGE", ), }} RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT", "INT") RETURN_NAMES = ("positive", "negative", "latent", "trim_latent") FUNCTION = "encode" CATEGORY = "conditioning/video_models" EXPERIMENTAL = True def encode(self, positive, negative, vae, width, height, length, batch_size, strength, control_video=None, control_masks=None, reference_image=None): latent_length = ((length - 1) // 4) + 1 if control_video is not None: control_video = comfy.utils.common_upscale(control_video[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) if control_video.shape[0] < length: control_video = torch.nn.functional.pad(control_video, (0, 0, 0, 0, 0, 0, 0, length - control_video.shape[0]), value=0.5) else: control_video = torch.ones((length, height, width, 3)) * 0.5 if reference_image is not None: reference_image = comfy.utils.common_upscale(reference_image[:1].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) reference_image = vae.encode(reference_image[:, :, :, :3]) reference_image = torch.cat([reference_image, comfy.latent_formats.Wan21().process_out(torch.zeros_like(reference_image))], dim=1) if control_masks is None: mask = torch.ones((length, height, width, 1)) else: mask = control_masks if mask.ndim == 3: mask = mask.unsqueeze(1) mask = comfy.utils.common_upscale(mask[:length], width, height, "bilinear", "center").movedim(1, -1) if mask.shape[0] < length: mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, 0, 0, length - mask.shape[0]), value=1.0) control_video = control_video - 0.5 inactive = (control_video * (1 - mask)) + 0.5 reactive = (control_video * mask) + 0.5 inactive = vae.encode(inactive[:, :, :, :3]) reactive = vae.encode(reactive[:, :, :, :3]) control_video_latent = torch.cat((inactive, reactive), dim=1) if reference_image is not None: control_video_latent = torch.cat((reference_image, control_video_latent), dim=2) vae_stride = 8 height_mask = height // vae_stride width_mask = width // vae_stride mask = mask.view(length, height_mask, vae_stride, width_mask, vae_stride) mask = mask.permute(2, 4, 0, 1, 3) mask = mask.reshape(vae_stride * vae_stride, length, height_mask, width_mask) mask = torch.nn.functional.interpolate(mask.unsqueeze(0), size=(latent_length, height_mask, width_mask), mode='nearest-exact').squeeze(0) trim_latent = 0 if reference_image is not None: mask_pad = torch.zeros_like(mask[:, :reference_image.shape[2], :, :]) mask = torch.cat((mask_pad, mask), dim=1) latent_length += reference_image.shape[2] trim_latent = reference_image.shape[2] mask = mask.unsqueeze(0) positive = node_helpers.conditioning_set_values(positive, {"vace_frames": [control_video_latent], "vace_mask": [mask], "vace_strength": [strength]}, append=True) negative = node_helpers.conditioning_set_values(negative, {"vace_frames": [control_video_latent], "vace_mask": [mask], "vace_strength": [strength]}, append=True) latent = torch.zeros([batch_size, 16, latent_length, height // 8, width // 8], device=comfy.model_management.intermediate_device()) out_latent = {} out_latent["samples"] = latent return (positive, negative, out_latent, trim_latent) class TrimVideoLatent: @classmethod def INPUT_TYPES(s): return {"required": { "samples": ("LATENT",), "trim_amount": ("INT", {"default": 0, "min": 0, "max": 99999}), }} RETURN_TYPES = ("LATENT",) FUNCTION = "op" CATEGORY = "latent/video" EXPERIMENTAL = True def op(self, samples, trim_amount): samples_out = samples.copy() s1 = samples["samples"] samples_out["samples"] = s1[:, :, trim_amount:] return (samples_out,) class WanCameraImageToVideo: @classmethod def INPUT_TYPES(s): return {"required": {"positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "vae": ("VAE", ), "width": ("INT", {"default": 832, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), "height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), "length": ("INT", {"default": 81, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}), "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), }, "optional": {"clip_vision_output": ("CLIP_VISION_OUTPUT", ), "start_image": ("IMAGE", ), "camera_conditions": ("WAN_CAMERA_EMBEDDING", ), }} RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") RETURN_NAMES = ("positive", "negative", "latent") FUNCTION = "encode" CATEGORY = "conditioning/video_models" def encode(self, positive, negative, vae, width, height, length, batch_size, start_image=None, clip_vision_output=None, camera_conditions=None): latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) concat_latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) concat_latent = comfy.latent_formats.Wan21().process_out(concat_latent) if start_image is not None: start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) concat_latent_image = vae.encode(start_image[:, :, :, :3]) concat_latent[:,:,:concat_latent_image.shape[2]] = concat_latent_image[:,:,:concat_latent.shape[2]] positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent}) negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent}) if camera_conditions is not None: positive = node_helpers.conditioning_set_values(positive, {'camera_conditions': camera_conditions}) negative = node_helpers.conditioning_set_values(negative, {'camera_conditions': camera_conditions}) if clip_vision_output is not None: positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output}) negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output}) out_latent = {} out_latent["samples"] = latent return (positive, negative, out_latent) NODE_CLASS_MAPPINGS = { "WanImageToVideo": WanImageToVideo, "WanFunControlToVideo": WanFunControlToVideo, "WanFunInpaintToVideo": WanFunInpaintToVideo, "WanFirstLastFrameToVideo": WanFirstLastFrameToVideo, "WanVaceToVideo": WanVaceToVideo, "TrimVideoLatent": TrimVideoLatent, "WanCameraImageToVideo": WanCameraImageToVideo, }