import torch import torch.nn.functional as F class Blend: def __init__(self): pass @classmethod def INPUT_TYPES(s): return { "required": { "image1": ("IMAGE",), "image2": ("IMAGE",), "blend_factor": ("FLOAT", { "default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01 }), "blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light"],), }, } RETURN_TYPES = ("IMAGE",) FUNCTION = "blend_images" CATEGORY = "postprocessing" def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str): blended_image = self.blend_mode(image1, image2, blend_mode) blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor blended_image = torch.clamp(blended_image, 0, 1) return (blended_image,) def blend_mode(self, img1, img2, mode): if mode == "normal": return img2 elif mode == "multiply": return img1 * img2 elif mode == "screen": return 1 - (1 - img1) * (1 - img2) elif mode == "overlay": return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2)) elif mode == "soft_light": return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1)) else: raise ValueError(f"Unsupported blend mode: {mode}") def g(self, x): return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x)) class Blur: def __init__(self): pass @classmethod def INPUT_TYPES(s): return { "required": { "image": ("IMAGE",), "blur_radius": ("INT", { "default": 1, "min": 1, "max": 31, "step": 1 }), "sigma": ("FLOAT", { "default": 1.0, "min": 0.1, "max": 10.0, "step": 0.1 }), }, } RETURN_TYPES = ("IMAGE",) FUNCTION = "blur" CATEGORY = "postprocessing" def gaussian_kernel(self, kernel_size: int, sigma: float): x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size), torch.linspace(-1, 1, kernel_size), indexing="ij") d = torch.sqrt(x * x + y * y) g = torch.exp(-(d * d) / (2.0 * sigma * sigma)) return g / g.sum() def blur(self, image: torch.Tensor, blur_radius: int, sigma: float): if blur_radius == 0: return (image,) batch_size, height, width, channels = image.shape kernel_size = blur_radius * 2 + 1 kernel = self.gaussian_kernel(kernel_size, sigma).repeat(channels, 1, 1).unsqueeze(1) image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C) blurred = F.conv2d(image, kernel, padding=kernel_size // 2, groups=channels) blurred = blurred.permute(0, 2, 3, 1) return (blurred,) class Dither: def __init__(self): pass @classmethod def INPUT_TYPES(s): return { "required": { "image": ("IMAGE",), "bits": ("INT", { "default": 4, "min": 1, "max": 8, "step": 1 }), }, } RETURN_TYPES = ("IMAGE",) FUNCTION = "dither" CATEGORY = "postprocessing" def dither(self, image: torch.Tensor, bits: int): batch_size, height, width, _ = image.shape result = torch.zeros_like(image) for b in range(batch_size): tensor_image = image[b] img = (tensor_image * 255) height, width, _ = img.shape scale = 255 / (2**bits - 1) for y in range(height): for x in range(width): old_pixel = img[y, x].clone() new_pixel = torch.round(old_pixel / scale) * scale img[y, x] = new_pixel quant_error = old_pixel - new_pixel if x + 1 < width: img[y, x + 1] += quant_error * 7 / 16 if y + 1 < height: if x - 1 >= 0: img[y + 1, x - 1] += quant_error * 3 / 16 img[y + 1, x] += quant_error * 5 / 16 if x + 1 < width: img[y + 1, x + 1] += quant_error * 1 / 16 dithered = img / 255 tensor = dithered.unsqueeze(0) result[b] = tensor return (result,) class Sharpen: def __init__(self): pass @classmethod def INPUT_TYPES(s): return { "required": { "image": ("IMAGE",), "sharpen_radius": ("INT", { "default": 1, "min": 1, "max": 31, "step": 1 }), "alpha": ("FLOAT", { "default": 1.0, "min": 0.1, "max": 5.0, "step": 0.1 }), }, } RETURN_TYPES = ("IMAGE",) FUNCTION = "sharpen" CATEGORY = "postprocessing" def sharpen(self, image: torch.Tensor, sharpen_radius: int, alpha: float): if sharpen_radius == 0: return (image,) batch_size, height, width, channels = image.shape kernel_size = sharpen_radius * 2 + 1 kernel = torch.ones((kernel_size, kernel_size), dtype=torch.float32) * -1 center = kernel_size // 2 kernel[center, center] = kernel_size**2 kernel *= alpha kernel = kernel.repeat(channels, 1, 1).unsqueeze(1) tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C) sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels) sharpened = sharpened.permute(0, 2, 3, 1) result = torch.clamp(sharpened, 0, 1) return (result,) NODE_CLASS_MAPPINGS = { "Blend": Blend, "Blur": Blur, "Dither": Dither, "Sharpen": Sharpen, }