""" This file is part of ComfyUI. Copyright (C) 2024 Comfy This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . """ from __future__ import annotations from typing import Optional, Callable import torch import copy import inspect import logging import uuid import collections import math import comfy.utils import comfy.float import comfy.model_management import comfy.lora import comfy.hooks import comfy.patcher_extension from comfy.patcher_extension import CallbacksMP, WrappersMP, PatcherInjection from comfy.comfy_types import UnetWrapperFunction def string_to_seed(data): crc = 0xFFFFFFFF for byte in data: if isinstance(byte, str): byte = ord(byte) crc ^= byte for _ in range(8): if crc & 1: crc = (crc >> 1) ^ 0xEDB88320 else: crc >>= 1 return crc ^ 0xFFFFFFFF def set_model_options_patch_replace(model_options, patch, name, block_name, number, transformer_index=None): to = model_options["transformer_options"].copy() if "patches_replace" not in to: to["patches_replace"] = {} else: to["patches_replace"] = to["patches_replace"].copy() if name not in to["patches_replace"]: to["patches_replace"][name] = {} else: to["patches_replace"][name] = to["patches_replace"][name].copy() if transformer_index is not None: block = (block_name, number, transformer_index) else: block = (block_name, number) to["patches_replace"][name][block] = patch model_options["transformer_options"] = to return model_options def set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=False): model_options["sampler_post_cfg_function"] = model_options.get("sampler_post_cfg_function", []) + [post_cfg_function] if disable_cfg1_optimization: model_options["disable_cfg1_optimization"] = True return model_options def set_model_options_pre_cfg_function(model_options, pre_cfg_function, disable_cfg1_optimization=False): model_options["sampler_pre_cfg_function"] = model_options.get("sampler_pre_cfg_function", []) + [pre_cfg_function] if disable_cfg1_optimization: model_options["disable_cfg1_optimization"] = True return model_options def create_model_options_clone(orig_model_options: dict): return comfy.patcher_extension.copy_nested_dicts(orig_model_options) def create_hook_patches_clone(orig_hook_patches): new_hook_patches = {} for hook_ref in orig_hook_patches: new_hook_patches[hook_ref] = {} for k in orig_hook_patches[hook_ref]: new_hook_patches[hook_ref][k] = orig_hook_patches[hook_ref][k][:] return new_hook_patches def wipe_lowvram_weight(m): if hasattr(m, "prev_comfy_cast_weights"): m.comfy_cast_weights = m.prev_comfy_cast_weights del m.prev_comfy_cast_weights m.weight_function = None m.bias_function = None class LowVramPatch: def __init__(self, key, patches): self.key = key self.patches = patches def __call__(self, weight): intermediate_dtype = weight.dtype if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops intermediate_dtype = torch.float32 return comfy.float.stochastic_rounding(comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype), weight.dtype, seed=string_to_seed(self.key)) return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype) def get_key_weight(model, key): set_func = None convert_func = None op_keys = key.rsplit('.', 1) if len(op_keys) < 2: weight = comfy.utils.get_attr(model, key) else: op = comfy.utils.get_attr(model, op_keys[0]) try: set_func = getattr(op, "set_{}".format(op_keys[1])) except AttributeError: pass try: convert_func = getattr(op, "convert_{}".format(op_keys[1])) except AttributeError: pass weight = getattr(op, op_keys[1]) if convert_func is not None: weight = comfy.utils.get_attr(model, key) return weight, set_func, convert_func class AutoPatcherEjector: def __init__(self, model: 'ModelPatcher', skip_and_inject_on_exit_only=False): self.model = model self.was_injected = False self.prev_skip_injection = False self.skip_and_inject_on_exit_only = skip_and_inject_on_exit_only def __enter__(self): self.was_injected = False self.prev_skip_injection = self.model.skip_injection if self.skip_and_inject_on_exit_only: self.model.skip_injection = True if self.model.is_injected: self.model.eject_model() self.was_injected = True def __exit__(self, *args): if self.skip_and_inject_on_exit_only: self.model.skip_injection = self.prev_skip_injection self.model.inject_model() if self.was_injected and not self.model.skip_injection: self.model.inject_model() self.model.skip_injection = self.prev_skip_injection class MemoryCounter: def __init__(self, initial: int, minimum=0): self.value = initial self.minimum = minimum # TODO: add a safe limit besides 0 def use(self, weight: torch.Tensor): weight_size = weight.nelement() * weight.element_size() if self.is_useable(weight_size): self.decrement(weight_size) return True return False def is_useable(self, used: int): return self.value - used > self.minimum def decrement(self, used: int): self.value -= used class ModelPatcher: def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False): self.size = size self.model = model if not hasattr(self.model, 'device'): logging.debug("Model doesn't have a device attribute.") self.model.device = offload_device elif self.model.device is None: self.model.device = offload_device self.patches = {} self.backup = {} self.object_patches = {} self.object_patches_backup = {} self.model_options = {"transformer_options":{}} self.model_size() self.load_device = load_device self.offload_device = offload_device self.weight_inplace_update = weight_inplace_update self.patches_uuid = uuid.uuid4() self.parent = None self.attachments: dict[str] = {} self.additional_models: dict[str, list[ModelPatcher]] = {} self.callbacks: dict[str, dict[str, list[Callable]]] = CallbacksMP.init_callbacks() self.wrappers: dict[str, dict[str, list[Callable]]] = WrappersMP.init_wrappers() self.is_injected = False self.skip_injection = False self.injections: dict[str, list[PatcherInjection]] = {} self.hook_patches: dict[comfy.hooks._HookRef] = {} self.hook_patches_backup: dict[comfy.hooks._HookRef] = {} self.hook_backup: dict[str, tuple[torch.Tensor, torch.device]] = {} self.cached_hook_patches: dict[comfy.hooks.HookGroup, dict[str, torch.Tensor]] = {} self.current_hooks: Optional[comfy.hooks.HookGroup] = None self.forced_hooks: Optional[comfy.hooks.HookGroup] = None # NOTE: only used for CLIP at this time self.is_clip = False self.hook_mode = comfy.hooks.EnumHookMode.MaxSpeed if not hasattr(self.model, 'model_loaded_weight_memory'): self.model.model_loaded_weight_memory = 0 if not hasattr(self.model, 'lowvram_patch_counter'): self.model.lowvram_patch_counter = 0 if not hasattr(self.model, 'model_lowvram'): self.model.model_lowvram = False if not hasattr(self.model, 'current_weight_patches_uuid'): self.model.current_weight_patches_uuid = None def model_size(self): if self.size > 0: return self.size self.size = comfy.model_management.module_size(self.model) return self.size def loaded_size(self): return self.model.model_loaded_weight_memory def lowvram_patch_counter(self): return self.model.lowvram_patch_counter def clone(self): n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update) n.patches = {} for k in self.patches: n.patches[k] = self.patches[k][:] n.patches_uuid = self.patches_uuid n.object_patches = self.object_patches.copy() n.model_options = copy.deepcopy(self.model_options) n.backup = self.backup n.object_patches_backup = self.object_patches_backup n.parent = self # attachments n.attachments = {} for k in self.attachments: if hasattr(self.attachments[k], "on_model_patcher_clone"): n.attachments[k] = self.attachments[k].on_model_patcher_clone() else: n.attachments[k] = self.attachments[k] # additional models for k, c in self.additional_models.items(): n.additional_models[k] = [x.clone() for x in c] # callbacks for k, c in self.callbacks.items(): n.callbacks[k] = {} for k1, c1 in c.items(): n.callbacks[k][k1] = c1.copy() # sample wrappers for k, w in self.wrappers.items(): n.wrappers[k] = {} for k1, w1 in w.items(): n.wrappers[k][k1] = w1.copy() # injection n.is_injected = self.is_injected n.skip_injection = self.skip_injection for k, i in self.injections.items(): n.injections[k] = i.copy() # hooks n.hook_patches = create_hook_patches_clone(self.hook_patches) n.hook_patches_backup = create_hook_patches_clone(self.hook_patches_backup) for group in self.cached_hook_patches: n.cached_hook_patches[group] = {} for k in self.cached_hook_patches[group]: n.cached_hook_patches[group][k] = self.cached_hook_patches[group][k] n.hook_backup = self.hook_backup n.current_hooks = self.current_hooks.clone() if self.current_hooks else self.current_hooks n.forced_hooks = self.forced_hooks.clone() if self.forced_hooks else self.forced_hooks n.is_clip = self.is_clip n.hook_mode = self.hook_mode for callback in self.get_all_callbacks(CallbacksMP.ON_CLONE): callback(self, n) return n def is_clone(self, other): if hasattr(other, 'model') and self.model is other.model: return True return False def clone_has_same_weights(self, clone: 'ModelPatcher'): if not self.is_clone(clone): return False if self.current_hooks != clone.current_hooks: return False if self.forced_hooks != clone.forced_hooks: return False if self.hook_patches.keys() != clone.hook_patches.keys(): return False if self.attachments.keys() != clone.attachments.keys(): return False if self.additional_models.keys() != clone.additional_models.keys(): return False for key in self.callbacks: if len(self.callbacks[key]) != len(clone.callbacks[key]): return False for key in self.wrappers: if len(self.wrappers[key]) != len(clone.wrappers[key]): return False if self.injections.keys() != clone.injections.keys(): return False if len(self.patches) == 0 and len(clone.patches) == 0: return True if self.patches_uuid == clone.patches_uuid: if len(self.patches) != len(clone.patches): logging.warning("WARNING: something went wrong, same patch uuid but different length of patches.") else: return True def memory_required(self, input_shape): return self.model.memory_required(input_shape=input_shape) def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False): if len(inspect.signature(sampler_cfg_function).parameters) == 3: self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way else: self.model_options["sampler_cfg_function"] = sampler_cfg_function if disable_cfg1_optimization: self.model_options["disable_cfg1_optimization"] = True def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False): self.model_options = set_model_options_post_cfg_function(self.model_options, post_cfg_function, disable_cfg1_optimization) def set_model_sampler_pre_cfg_function(self, pre_cfg_function, disable_cfg1_optimization=False): self.model_options = set_model_options_pre_cfg_function(self.model_options, pre_cfg_function, disable_cfg1_optimization) def set_model_unet_function_wrapper(self, unet_wrapper_function: UnetWrapperFunction): self.model_options["model_function_wrapper"] = unet_wrapper_function def set_model_denoise_mask_function(self, denoise_mask_function): self.model_options["denoise_mask_function"] = denoise_mask_function def set_model_patch(self, patch, name): to = self.model_options["transformer_options"] if "patches" not in to: to["patches"] = {} to["patches"][name] = to["patches"].get(name, []) + [patch] def set_model_patch_replace(self, patch, name, block_name, number, transformer_index=None): self.model_options = set_model_options_patch_replace(self.model_options, patch, name, block_name, number, transformer_index=transformer_index) def set_model_attn1_patch(self, patch): self.set_model_patch(patch, "attn1_patch") def set_model_attn2_patch(self, patch): self.set_model_patch(patch, "attn2_patch") def set_model_attn1_replace(self, patch, block_name, number, transformer_index=None): self.set_model_patch_replace(patch, "attn1", block_name, number, transformer_index) def set_model_attn2_replace(self, patch, block_name, number, transformer_index=None): self.set_model_patch_replace(patch, "attn2", block_name, number, transformer_index) def set_model_attn1_output_patch(self, patch): self.set_model_patch(patch, "attn1_output_patch") def set_model_attn2_output_patch(self, patch): self.set_model_patch(patch, "attn2_output_patch") def set_model_input_block_patch(self, patch): self.set_model_patch(patch, "input_block_patch") def set_model_input_block_patch_after_skip(self, patch): self.set_model_patch(patch, "input_block_patch_after_skip") def set_model_output_block_patch(self, patch): self.set_model_patch(patch, "output_block_patch") def set_model_emb_patch(self, patch): self.set_model_patch(patch, "emb_patch") def set_model_forward_timestep_embed_patch(self, patch): self.set_model_patch(patch, "forward_timestep_embed_patch") def add_object_patch(self, name, obj): self.object_patches[name] = obj def get_model_object(self, name): if name in self.object_patches: return self.object_patches[name] else: if name in self.object_patches_backup: return self.object_patches_backup[name] else: return comfy.utils.get_attr(self.model, name) def model_patches_to(self, device): to = self.model_options["transformer_options"] if "patches" in to: patches = to["patches"] for name in patches: patch_list = patches[name] for i in range(len(patch_list)): if hasattr(patch_list[i], "to"): patch_list[i] = patch_list[i].to(device) if "patches_replace" in to: patches = to["patches_replace"] for name in patches: patch_list = patches[name] for k in patch_list: if hasattr(patch_list[k], "to"): patch_list[k] = patch_list[k].to(device) if "model_function_wrapper" in self.model_options: wrap_func = self.model_options["model_function_wrapper"] if hasattr(wrap_func, "to"): self.model_options["model_function_wrapper"] = wrap_func.to(device) def model_dtype(self): if hasattr(self.model, "get_dtype"): return self.model.get_dtype() def add_patches(self, patches, strength_patch=1.0, strength_model=1.0): with self.use_ejected(): p = set() model_sd = self.model.state_dict() for k in patches: offset = None function = None if isinstance(k, str): key = k else: offset = k[1] key = k[0] if len(k) > 2: function = k[2] if key in model_sd: p.add(k) current_patches = self.patches.get(key, []) current_patches.append((strength_patch, patches[k], strength_model, offset, function)) self.patches[key] = current_patches self.patches_uuid = uuid.uuid4() return list(p) def get_key_patches(self, filter_prefix=None): model_sd = self.model_state_dict() p = {} for k in model_sd: if filter_prefix is not None: if not k.startswith(filter_prefix): continue bk = self.backup.get(k, None) hbk = self.hook_backup.get(k, None) weight, set_func, convert_func = get_key_weight(self.model, k) if bk is not None: weight = bk.weight if hbk is not None: weight = hbk[0] if convert_func is None: convert_func = lambda a, **kwargs: a if k in self.patches: p[k] = [(weight, convert_func)] + self.patches[k] else: p[k] = [(weight, convert_func)] return p def model_state_dict(self, filter_prefix=None): with self.use_ejected(): sd = self.model.state_dict() keys = list(sd.keys()) if filter_prefix is not None: for k in keys: if not k.startswith(filter_prefix): sd.pop(k) return sd def patch_weight_to_device(self, key, device_to=None, inplace_update=False): if key not in self.patches: return weight, set_func, convert_func = get_key_weight(self.model, key) inplace_update = self.weight_inplace_update or inplace_update if key not in self.backup: self.backup[key] = collections.namedtuple('Dimension', ['weight', 'inplace_update'])(weight.to(device=self.offload_device, copy=inplace_update), inplace_update) if device_to is not None: temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True) else: temp_weight = weight.to(torch.float32, copy=True) if convert_func is not None: temp_weight = convert_func(temp_weight, inplace=True) out_weight = comfy.lora.calculate_weight(self.patches[key], temp_weight, key) if set_func is None: out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key)) if inplace_update: comfy.utils.copy_to_param(self.model, key, out_weight) else: comfy.utils.set_attr_param(self.model, key, out_weight) else: set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key)) def _load_list(self): loading = [] for n, m in self.model.named_modules(): params = [] skip = False for name, param in m.named_parameters(recurse=False): params.append(name) for name, param in m.named_parameters(recurse=True): if name not in params: skip = True # skip random weights in non leaf modules break if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0): loading.append((comfy.model_management.module_size(m), n, m, params)) return loading def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False): with self.use_ejected(): self.unpatch_hooks() mem_counter = 0 patch_counter = 0 lowvram_counter = 0 loading = self._load_list() load_completely = [] loading.sort(reverse=True) for x in loading: n = x[1] m = x[2] params = x[3] module_mem = x[0] lowvram_weight = False if not full_load and hasattr(m, "comfy_cast_weights"): if mem_counter + module_mem >= lowvram_model_memory: lowvram_weight = True lowvram_counter += 1 if hasattr(m, "prev_comfy_cast_weights"): #Already lowvramed continue weight_key = "{}.weight".format(n) bias_key = "{}.bias".format(n) if lowvram_weight: if weight_key in self.patches: if force_patch_weights: self.patch_weight_to_device(weight_key) else: m.weight_function = LowVramPatch(weight_key, self.patches) patch_counter += 1 if bias_key in self.patches: if force_patch_weights: self.patch_weight_to_device(bias_key) else: m.bias_function = LowVramPatch(bias_key, self.patches) patch_counter += 1 m.prev_comfy_cast_weights = m.comfy_cast_weights m.comfy_cast_weights = True else: if hasattr(m, "comfy_cast_weights"): if m.comfy_cast_weights: wipe_lowvram_weight(m) if full_load or mem_counter + module_mem < lowvram_model_memory: mem_counter += module_mem load_completely.append((module_mem, n, m, params)) load_completely.sort(reverse=True) for x in load_completely: n = x[1] m = x[2] params = x[3] if hasattr(m, "comfy_patched_weights"): if m.comfy_patched_weights == True: continue for param in params: self.patch_weight_to_device("{}.{}".format(n, param), device_to=device_to) logging.debug("lowvram: loaded module regularly {} {}".format(n, m)) m.comfy_patched_weights = True for x in load_completely: x[2].to(device_to) if lowvram_counter > 0: logging.info("loaded partially {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), patch_counter)) self.model.model_lowvram = True else: logging.info("loaded completely {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load)) self.model.model_lowvram = False if full_load: self.model.to(device_to) mem_counter = self.model_size() self.model.lowvram_patch_counter += patch_counter self.model.device = device_to self.model.model_loaded_weight_memory = mem_counter self.model.current_weight_patches_uuid = self.patches_uuid for callback in self.get_all_callbacks(CallbacksMP.ON_LOAD): callback(self, device_to, lowvram_model_memory, force_patch_weights, full_load) self.apply_hooks(self.forced_hooks, force_apply=True) def patch_model(self, device_to=None, lowvram_model_memory=0, load_weights=True, force_patch_weights=False): with self.use_ejected(): for k in self.object_patches: old = comfy.utils.set_attr(self.model, k, self.object_patches[k]) if k not in self.object_patches_backup: self.object_patches_backup[k] = old if lowvram_model_memory == 0: full_load = True else: full_load = False if load_weights: self.load(device_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights, full_load=full_load) self.inject_model() return self.model def unpatch_model(self, device_to=None, unpatch_weights=True): self.eject_model() if unpatch_weights: self.unpatch_hooks() if self.model.model_lowvram: for m in self.model.modules(): wipe_lowvram_weight(m) self.model.model_lowvram = False self.model.lowvram_patch_counter = 0 keys = list(self.backup.keys()) for k in keys: bk = self.backup[k] if bk.inplace_update: comfy.utils.copy_to_param(self.model, k, bk.weight) else: comfy.utils.set_attr_param(self.model, k, bk.weight) self.model.current_weight_patches_uuid = None self.backup.clear() if device_to is not None: self.model.to(device_to) self.model.device = device_to self.model.model_loaded_weight_memory = 0 for m in self.model.modules(): if hasattr(m, "comfy_patched_weights"): del m.comfy_patched_weights keys = list(self.object_patches_backup.keys()) for k in keys: comfy.utils.set_attr(self.model, k, self.object_patches_backup[k]) self.object_patches_backup.clear() def partially_unload(self, device_to, memory_to_free=0): with self.use_ejected(): memory_freed = 0 patch_counter = 0 unload_list = self._load_list() unload_list.sort() for unload in unload_list: if memory_to_free < memory_freed: break module_mem = unload[0] n = unload[1] m = unload[2] params = unload[3] lowvram_possible = hasattr(m, "comfy_cast_weights") if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True: move_weight = True for param in params: key = "{}.{}".format(n, param) bk = self.backup.get(key, None) if bk is not None: if not lowvram_possible: move_weight = False break if bk.inplace_update: comfy.utils.copy_to_param(self.model, key, bk.weight) else: comfy.utils.set_attr_param(self.model, key, bk.weight) self.backup.pop(key) weight_key = "{}.weight".format(n) bias_key = "{}.bias".format(n) if move_weight: m.to(device_to) if lowvram_possible: if weight_key in self.patches: m.weight_function = LowVramPatch(weight_key, self.patches) patch_counter += 1 if bias_key in self.patches: m.bias_function = LowVramPatch(bias_key, self.patches) patch_counter += 1 m.prev_comfy_cast_weights = m.comfy_cast_weights m.comfy_cast_weights = True m.comfy_patched_weights = False memory_freed += module_mem logging.debug("freed {}".format(n)) self.model.model_lowvram = True self.model.lowvram_patch_counter += patch_counter self.model.model_loaded_weight_memory -= memory_freed return memory_freed def partially_load(self, device_to, extra_memory=0, force_patch_weights=False): with self.use_ejected(skip_and_inject_on_exit_only=True): unpatch_weights = self.model.current_weight_patches_uuid is not None and (self.model.current_weight_patches_uuid != self.patches_uuid or force_patch_weights) # TODO: force_patch_weights should not unload + reload full model used = self.model.model_loaded_weight_memory self.unpatch_model(self.offload_device, unpatch_weights=unpatch_weights) if unpatch_weights: extra_memory += (used - self.model.model_loaded_weight_memory) self.patch_model(load_weights=False) full_load = False if self.model.model_lowvram == False and self.model.model_loaded_weight_memory > 0: self.apply_hooks(self.forced_hooks, force_apply=True) return 0 if self.model.model_loaded_weight_memory + extra_memory > self.model_size(): full_load = True current_used = self.model.model_loaded_weight_memory try: self.load(device_to, lowvram_model_memory=current_used + extra_memory, force_patch_weights=force_patch_weights, full_load=full_load) except Exception as e: self.detach() raise e return self.model.model_loaded_weight_memory - current_used def detach(self, unpatch_all=True): self.eject_model() self.model_patches_to(self.offload_device) if unpatch_all: self.unpatch_model(self.offload_device, unpatch_weights=unpatch_all) for callback in self.get_all_callbacks(CallbacksMP.ON_DETACH): callback(self, unpatch_all) return self.model def current_loaded_device(self): return self.model.device def calculate_weight(self, patches, weight, key, intermediate_dtype=torch.float32): print("WARNING the ModelPatcher.calculate_weight function is deprecated, please use: comfy.lora.calculate_weight instead") return comfy.lora.calculate_weight(patches, weight, key, intermediate_dtype=intermediate_dtype) def cleanup(self): self.clean_hooks() if hasattr(self.model, "current_patcher"): self.model.current_patcher = None for callback in self.get_all_callbacks(CallbacksMP.ON_CLEANUP): callback(self) def add_callback(self, call_type: str, callback: Callable): self.add_callback_with_key(call_type, None, callback) def add_callback_with_key(self, call_type: str, key: str, callback: Callable): c = self.callbacks.setdefault(call_type, {}).setdefault(key, []) c.append(callback) def remove_callbacks_with_key(self, call_type: str, key: str): c = self.callbacks.get(call_type, {}) if key in c: c.pop(key) def get_callbacks(self, call_type: str, key: str): return self.callbacks.get(call_type, {}).get(key, []) def get_all_callbacks(self, call_type: str): c_list = [] for c in self.callbacks.get(call_type, {}).values(): c_list.extend(c) return c_list def add_wrapper(self, wrapper_type: str, wrapper: Callable): self.add_wrapper_with_key(wrapper_type, None, wrapper) def add_wrapper_with_key(self, wrapper_type: str, key: str, wrapper: Callable): w = self.wrappers.setdefault(wrapper_type, {}).setdefault(key, []) w.append(wrapper) def remove_wrappers_with_key(self, wrapper_type: str, key: str): w = self.wrappers.get(wrapper_type, {}) if key in w: w.pop(key) def get_wrappers(self, wrapper_type: str, key: str): return self.wrappers.get(wrapper_type, {}).get(key, []) def get_all_wrappers(self, wrapper_type: str): w_list = [] for w in self.wrappers.get(wrapper_type, {}).values(): w_list.extend(w) return w_list def set_attachments(self, key: str, attachment): self.attachments[key] = attachment def remove_attachments(self, key: str): if key in self.attachments: self.attachments.pop(key) def get_attachment(self, key: str): return self.attachments.get(key, None) def set_injections(self, key: str, injections: list[PatcherInjection]): self.injections[key] = injections def remove_injections(self, key: str): if key in self.injections: self.injections.pop(key) def set_additional_models(self, key: str, models: list['ModelPatcher']): self.additional_models[key] = models def remove_additional_models(self, key: str): if key in self.additional_models: self.additional_models.pop(key) def get_additional_models_with_key(self, key: str): return self.additional_models.get(key, []) def get_additional_models(self): all_models = [] for models in self.additional_models.values(): all_models.extend(models) return all_models def get_nested_additional_models(self): def _evaluate_sub_additional_models(prev_models: list[ModelPatcher], cache_set: set[ModelPatcher]): '''Make sure circular references do not cause infinite recursion.''' next_models = [] for model in prev_models: candidates = model.get_additional_models() for c in candidates: if c not in cache_set: next_models.append(c) cache_set.add(c) if len(next_models) == 0: return prev_models return prev_models + _evaluate_sub_additional_models(next_models, cache_set) all_models = self.get_additional_models() models_set = set(all_models) real_all_models = _evaluate_sub_additional_models(prev_models=all_models, cache_set=models_set) return real_all_models def use_ejected(self, skip_and_inject_on_exit_only=False): return AutoPatcherEjector(self, skip_and_inject_on_exit_only=skip_and_inject_on_exit_only) def inject_model(self): if self.is_injected or self.skip_injection: return for injections in self.injections.values(): for inj in injections: inj.inject(self) self.is_injected = True if self.is_injected: for callback in self.get_all_callbacks(CallbacksMP.ON_INJECT_MODEL): callback(self) def eject_model(self): if not self.is_injected: return for injections in self.injections.values(): for inj in injections: inj.eject(self) self.is_injected = False for callback in self.get_all_callbacks(CallbacksMP.ON_EJECT_MODEL): callback(self) def pre_run(self): if hasattr(self.model, "current_patcher"): self.model.current_patcher = self for callback in self.get_all_callbacks(CallbacksMP.ON_PRE_RUN): callback(self) def prepare_state(self, timestep): for callback in self.get_all_callbacks(CallbacksMP.ON_PREPARE_STATE): callback(self, timestep) def restore_hook_patches(self): if len(self.hook_patches_backup) > 0: self.hook_patches = self.hook_patches_backup self.hook_patches_backup = {} def set_hook_mode(self, hook_mode: comfy.hooks.EnumHookMode): self.hook_mode = hook_mode def prepare_hook_patches_current_keyframe(self, t: torch.Tensor, hook_group: comfy.hooks.HookGroup): curr_t = t[0] reset_current_hooks = False for hook in hook_group.hooks: changed = hook.hook_keyframe.prepare_current_keyframe(curr_t=curr_t) # if keyframe changed, remove any cached HookGroups that contain hook with the same hook_ref; # this will cause the weights to be recalculated when sampling if changed: # reset current_hooks if contains hook that changed if self.current_hooks is not None: for current_hook in self.current_hooks.hooks: if current_hook == hook: reset_current_hooks = True break for cached_group in list(self.cached_hook_patches.keys()): if cached_group.contains(hook): self.cached_hook_patches.pop(cached_group) if reset_current_hooks: self.patch_hooks(None) def register_all_hook_patches(self, hooks_dict: dict[comfy.hooks.EnumHookType, dict[comfy.hooks.Hook, None]], target: comfy.hooks.EnumWeightTarget, model_options: dict=None): self.restore_hook_patches() registered_hooks: list[comfy.hooks.Hook] = [] # handle WrapperHooks, if model_options provided if model_options is not None: for hook in hooks_dict.get(comfy.hooks.EnumHookType.Wrappers, {}): hook.add_hook_patches(self, model_options, target, registered_hooks) # handle WeightHooks weight_hooks_to_register: list[comfy.hooks.WeightHook] = [] for hook in hooks_dict.get(comfy.hooks.EnumHookType.Weight, {}): if hook.hook_ref not in self.hook_patches: weight_hooks_to_register.append(hook) if len(weight_hooks_to_register) > 0: # clone hook_patches to become backup so that any non-dynamic hooks will return to their original state self.hook_patches_backup = create_hook_patches_clone(self.hook_patches) for hook in weight_hooks_to_register: hook.add_hook_patches(self, model_options, target, registered_hooks) for callback in self.get_all_callbacks(CallbacksMP.ON_REGISTER_ALL_HOOK_PATCHES): callback(self, hooks_dict, target) def add_hook_patches(self, hook: comfy.hooks.WeightHook, patches, strength_patch=1.0, strength_model=1.0): with self.use_ejected(): # NOTE: this mirrors behavior of add_patches func current_hook_patches: dict[str,list] = self.hook_patches.get(hook.hook_ref, {}) p = set() model_sd = self.model.state_dict() for k in patches: offset = None function = None if isinstance(k, str): key = k else: offset = k[1] key = k[0] if len(k) > 2: function = k[2] if key in model_sd: p.add(k) current_patches: list[tuple] = current_hook_patches.get(key, []) current_patches.append((strength_patch, patches[k], strength_model, offset, function)) current_hook_patches[key] = current_patches self.hook_patches[hook.hook_ref] = current_hook_patches # since should care about these patches too to determine if same model, reroll patches_uuid self.patches_uuid = uuid.uuid4() return list(p) def get_combined_hook_patches(self, hooks: comfy.hooks.HookGroup): # combined_patches will contain weights of all relevant hooks, per key combined_patches = {} if hooks is not None: for hook in hooks.hooks: hook_patches: dict = self.hook_patches.get(hook.hook_ref, {}) for key in hook_patches.keys(): current_patches: list[tuple] = combined_patches.get(key, []) if math.isclose(hook.strength, 1.0): current_patches.extend(hook_patches[key]) else: # patches are stored as tuples: (strength_patch, (tuple_with_weights,), strength_model) for patch in hook_patches[key]: new_patch = list(patch) new_patch[0] *= hook.strength current_patches.append(tuple(new_patch)) combined_patches[key] = current_patches return combined_patches def apply_hooks(self, hooks: comfy.hooks.HookGroup, transformer_options: dict=None, force_apply=False): # TODO: return transformer_options dict with any additions from hooks if self.current_hooks == hooks and (not force_apply or (not self.is_clip and hooks is None)): return {} self.patch_hooks(hooks=hooks) for callback in self.get_all_callbacks(CallbacksMP.ON_APPLY_HOOKS): callback(self, hooks) return {} def patch_hooks(self, hooks: comfy.hooks.HookGroup): with self.use_ejected(): self.unpatch_hooks() if hooks is not None: model_sd_keys = list(self.model_state_dict().keys()) memory_counter = None if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed: # TODO: minimum_counter should have a minimum that conforms to loaded model requirements memory_counter = MemoryCounter(initial=comfy.model_management.get_free_memory(self.load_device), minimum=comfy.model_management.minimum_inference_memory()*2) # if have cached weights for hooks, use it cached_weights = self.cached_hook_patches.get(hooks, None) if cached_weights is not None: for key in cached_weights: if key not in model_sd_keys: print(f"WARNING cached hook could not patch. key does not exist in model: {key}") continue self.patch_cached_hook_weights(cached_weights=cached_weights, key=key, memory_counter=memory_counter) else: relevant_patches = self.get_combined_hook_patches(hooks=hooks) original_weights = None if len(relevant_patches) > 0: original_weights = self.get_key_patches() for key in relevant_patches: if key not in model_sd_keys: print(f"WARNING cached hook would not patch. key does not exist in model: {key}") continue self.patch_hook_weight_to_device(hooks=hooks, combined_patches=relevant_patches, key=key, original_weights=original_weights, memory_counter=memory_counter) self.current_hooks = hooks def patch_cached_hook_weights(self, cached_weights: dict, key: str, memory_counter: MemoryCounter): if key not in self.hook_backup: weight: torch.Tensor = comfy.utils.get_attr(self.model, key) target_device = self.offload_device if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed: used = memory_counter.use(weight) if used: target_device = weight.device self.hook_backup[key] = (weight.to(device=target_device, copy=True), weight.device) comfy.utils.copy_to_param(self.model, key, cached_weights[key][0].to(device=cached_weights[key][1])) def clear_cached_hook_weights(self): self.cached_hook_patches.clear() self.patch_hooks(None) def patch_hook_weight_to_device(self, hooks: comfy.hooks.HookGroup, combined_patches: dict, key: str, original_weights: dict, memory_counter: MemoryCounter): if key not in combined_patches: return weight, set_func, convert_func = get_key_weight(self.model, key) weight: torch.Tensor if key not in self.hook_backup: target_device = self.offload_device if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed: used = memory_counter.use(weight) if used: target_device = weight.device self.hook_backup[key] = (weight.to(device=target_device, copy=True), weight.device) # TODO: properly handle LowVramPatch, if it ends up an issue temp_weight = comfy.model_management.cast_to_device(weight, weight.device, torch.float32, copy=True) if convert_func is not None: temp_weight = convert_func(temp_weight, inplace=True) out_weight = comfy.lora.calculate_weight(combined_patches[key], temp_weight, key, original_weights=original_weights) del original_weights[key] if set_func is None: out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key)) comfy.utils.copy_to_param(self.model, key, out_weight) else: set_func(out_weight, inplace_update=True, seed=string_to_seed(key)) if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed: # TODO: disable caching if not enough system RAM to do so target_device = self.offload_device used = memory_counter.use(weight) if used: target_device = weight.device self.cached_hook_patches.setdefault(hooks, {}) self.cached_hook_patches[hooks][key] = (out_weight.to(device=target_device, copy=False), weight.device) del temp_weight del out_weight del weight def unpatch_hooks(self) -> None: with self.use_ejected(): if len(self.hook_backup) == 0: self.current_hooks = None return keys = list(self.hook_backup.keys()) for k in keys: comfy.utils.copy_to_param(self.model, k, self.hook_backup[k][0].to(device=self.hook_backup[k][1])) self.hook_backup.clear() self.current_hooks = None def clean_hooks(self): self.unpatch_hooks() self.clear_cached_hook_weights() def __del__(self): self.detach(unpatch_all=False)