from .k_diffusion import sampling as k_diffusion_sampling from .k_diffusion import external as k_diffusion_external from .extra_samplers import uni_pc import torch import contextlib import model_management class CFGDenoiser(torch.nn.Module): def __init__(self, model): super().__init__() self.inner_model = model def forward(self, x, sigma, uncond, cond, cond_scale): if len(uncond[0]) == len(cond[0]) and x.shape[0] * x.shape[2] * x.shape[3] < (96 * 96): #TODO check memory instead x_in = torch.cat([x] * 2) sigma_in = torch.cat([sigma] * 2) cond_in = torch.cat([uncond, cond]) uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2) else: cond = self.inner_model(x, sigma, cond=cond) uncond = self.inner_model(x, sigma, cond=uncond) return uncond + (cond - uncond) * cond_scale def sampling_function(model_function, x, sigma, uncond, cond, cond_scale): def get_area_and_mult(cond, x_in): area = (x_in.shape[2], x_in.shape[3], 0, 0) strength = 1.0 min_sigma = 0.0 max_sigma = 999.0 if 'area' in cond[1]: area = cond[1]['area'] if 'strength' in cond[1]: strength = cond[1]['strength'] input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] mult = torch.ones_like(input_x) * strength rr = 8 if area[2] != 0: for t in range(rr): mult[:,:,area[2]+t:area[2]+1+t,:] *= ((1.0/rr) * (t + 1)) if (area[0] + area[2]) < x_in.shape[2]: for t in range(rr): mult[:,:,area[0] + area[2] - 1 - t:area[0] + area[2] - t,:] *= ((1.0/rr) * (t + 1)) if area[3] != 0: for t in range(rr): mult[:,:,:,area[3]+t:area[3]+1+t] *= ((1.0/rr) * (t + 1)) if (area[1] + area[3]) < x_in.shape[3]: for t in range(rr): mult[:,:,:,area[1] + area[3] - 1 - t:area[1] + area[3] - t] *= ((1.0/rr) * (t + 1)) return (input_x, mult, cond[0], area) def calc_cond_uncond_batch(model_function, cond, uncond, x_in, sigma, max_total_area): out_cond = torch.zeros_like(x_in) out_count = torch.ones_like(x_in)/100000.0 out_uncond = torch.zeros_like(x_in) out_uncond_count = torch.ones_like(x_in)/100000.0 COND = 0 UNCOND = 1 to_run = [] for x in cond: p = get_area_and_mult(x, x_in) if p is None: continue to_run += [(p, COND)] for x in uncond: p = get_area_and_mult(x, x_in) if p is None: continue to_run += [(p, UNCOND)] while len(to_run) > 0: first = to_run[0] first_shape = first[0][0].shape to_batch_temp = [] for x in range(len(to_run)): if to_run[x][0][0].shape == first_shape: if to_run[x][0][2].shape == first[0][2].shape: to_batch_temp += [x] to_batch_temp.reverse() to_batch = to_batch_temp[:1] for i in range(1, len(to_batch_temp) + 1): batch_amount = to_batch_temp[:len(to_batch_temp)//i] if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area): to_batch = batch_amount break input_x = [] mult = [] c = [] cond_or_uncond = [] area = [] for x in to_batch: o = to_run.pop(x) p = o[0] input_x += [p[0]] mult += [p[1]] c += [p[2]] area += [p[3]] cond_or_uncond += [o[1]] batch_chunks = len(cond_or_uncond) input_x = torch.cat(input_x) c = torch.cat(c) sigma_ = torch.cat([sigma] * batch_chunks) output = model_function(input_x, sigma_, cond=c).chunk(batch_chunks) del input_x for o in range(batch_chunks): if cond_or_uncond[o] == COND: out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o] out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o] else: out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o] out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o] del mult out_cond /= out_count del out_count out_uncond /= out_uncond_count del out_uncond_count return out_cond, out_uncond max_total_area = model_management.maximum_batch_area() cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, sigma, max_total_area) return uncond + (cond - uncond) * cond_scale class CFGDenoiserComplex(torch.nn.Module): def __init__(self, model): super().__init__() self.inner_model = model def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask): if denoise_mask is not None: latent_mask = 1. - denoise_mask x = x * denoise_mask + (self.latent_image + self.noise * sigma) * latent_mask out = sampling_function(self.inner_model, x, sigma, uncond, cond, cond_scale) if denoise_mask is not None: out *= denoise_mask if denoise_mask is not None: out += self.latent_image * latent_mask return out def simple_scheduler(model, steps): sigs = [] ss = len(model.sigmas) / steps for x in range(steps): sigs += [float(model.sigmas[-(1 + int(x * ss))])] sigs += [0.0] return torch.FloatTensor(sigs) def create_cond_with_same_area_if_none(conds, c): if 'area' not in c[1]: return c_area = c[1]['area'] smallest = None for x in conds: if 'area' in x[1]: a = x[1]['area'] if c_area[2] >= a[2] and c_area[3] >= a[3]: if a[0] + a[2] >= c_area[0] + c_area[2]: if a[1] + a[3] >= c_area[1] + c_area[3]: if smallest is None: smallest = x elif 'area' not in smallest[1]: smallest = x else: if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]: smallest = x else: if smallest is None: smallest = x if smallest is None: return if 'area' in smallest[1]: if smallest[1]['area'] == c_area: return n = c[1].copy() conds += [[smallest[0], n]] class KSampler: SCHEDULERS = ["karras", "normal", "simple"] SAMPLERS = ["sample_euler", "sample_euler_ancestral", "sample_heun", "sample_dpm_2", "sample_dpm_2_ancestral", "sample_lms", "sample_dpm_fast", "sample_dpm_adaptive", "sample_dpmpp_2s_ancestral", "sample_dpmpp_sde", "sample_dpmpp_2m", "uni_pc"] def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None): self.model = model if self.model.parameterization == "v": self.model_wrap = k_diffusion_external.CompVisVDenoiser(self.model, quantize=True) else: self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model, quantize=True) self.model_k = CFGDenoiserComplex(self.model_wrap) self.device = device if scheduler not in self.SCHEDULERS: scheduler = self.SCHEDULERS[0] if sampler not in self.SAMPLERS: sampler = self.SAMPLERS[0] self.scheduler = scheduler self.sampler = sampler self.sigma_min=float(self.model_wrap.sigma_min) self.sigma_max=float(self.model_wrap.sigma_max) self.set_steps(steps, denoise) def _calculate_sigmas(self, steps): sigmas = None discard_penultimate_sigma = False if self.sampler in ['sample_dpm_2', 'sample_dpm_2_ancestral']: steps += 1 discard_penultimate_sigma = True if self.scheduler == "karras": sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max, device=self.device) elif self.scheduler == "normal": sigmas = self.model_wrap.get_sigmas(steps).to(self.device) elif self.scheduler == "simple": sigmas = simple_scheduler(self.model_wrap, steps).to(self.device) else: print("error invalid scheduler", self.scheduler) if discard_penultimate_sigma: sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) return sigmas def set_steps(self, steps, denoise=None): self.steps = steps if denoise is None: self.sigmas = self._calculate_sigmas(steps) else: new_steps = int(steps/denoise) sigmas = self._calculate_sigmas(new_steps) self.sigmas = sigmas[-(steps + 1):] def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None): sigmas = self.sigmas sigma_min = self.sigma_min if last_step is not None and last_step < (len(sigmas) - 1): sigma_min = sigmas[last_step] sigmas = sigmas[:last_step + 1] if force_full_denoise: sigmas[-1] = 0 if start_step is not None: if start_step < (len(sigmas) - 1): sigmas = sigmas[start_step:] else: if latent_image is not None: return latent_image else: return torch.zeros_like(noise) positive = positive[:] negative = negative[:] #make sure each cond area has an opposite one with the same area for c in positive: create_cond_with_same_area_if_none(negative, c) for c in negative: create_cond_with_same_area_if_none(positive, c) if self.model.model.diffusion_model.dtype == torch.float16: precision_scope = torch.autocast else: precision_scope = contextlib.nullcontext latent_mask = None if denoise_mask is not None: latent_mask = (torch.ones_like(denoise_mask) - denoise_mask) extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg} with precision_scope(self.device): if self.sampler == "uni_pc": samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, extra_args=extra_args, noise_mask=denoise_mask) else: extra_args["denoise_mask"] = denoise_mask self.model_k.latent_image = latent_image self.model_k.noise = noise noise = noise * sigmas[0] if latent_image is not None: noise += latent_image if self.sampler == "sample_dpm_fast": samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], self.steps, extra_args=extra_args) elif self.sampler == "sample_dpm_adaptive": samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args) else: samples = getattr(k_diffusion_sampling, self.sampler)(self.model_k, noise, sigmas, extra_args=extra_args) return samples.to(torch.float32)