Compare commits

...

8 Commits

Author SHA1 Message Date
Chenlei Hu
11b23d5da6
Merge 522d923948 into 22ad513c72 2025-04-11 08:18:20 -04:00
comfyanonymous
22ad513c72 Refactor node cache code to more easily add other types of cache. 2025-04-11 07:16:52 -04:00
Chargeuk
ed945a1790
Dependency Aware Node Caching for low RAM/VRAM machines (#7509)
* add dependency aware cache that removed a cached node as soon as all of its decendents have executed. This allows users with lower RAM to run workflows they would otherwise not be able to run. The downside is that every workflow will fully run each time even if no nodes have changed.

* remove test code

* tidy code
2025-04-11 06:55:51 -04:00
Chenlei Hu
f9207c6936
Update frontend to 1.15 (#7564) 2025-04-11 06:46:20 -04:00
Christian Byrne
8ad7477647
dont cache templates index (#7569) 2025-04-11 06:06:53 -04:00
Chenlei Hu
522d923948 nit 2025-03-25 16:47:52 -04:00
Chenlei Hu
c05c9b552b nit 2025-03-25 16:47:42 -04:00
Chenlei Hu
27598702e9 [Type] Annotate graph.get_input_info 2025-03-25 16:44:55 -04:00
7 changed files with 236 additions and 38 deletions

View File

@ -101,6 +101,7 @@ parser.add_argument("--preview-size", type=int, default=512, help="Sets the maxi
cache_group = parser.add_mutually_exclusive_group() cache_group = parser.add_mutually_exclusive_group()
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.") cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.") cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
cache_group.add_argument("--cache-none", action="store_true", help="Reduced RAM/VRAM usage at the expense of executing every node for each run.")
attn_group = parser.add_mutually_exclusive_group() attn_group = parser.add_mutually_exclusive_group()
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.") attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")

View File

@ -316,3 +316,156 @@ class LRUCache(BasicCache):
self.children[cache_key].append(self.cache_key_set.get_data_key(child_id)) self.children[cache_key].append(self.cache_key_set.get_data_key(child_id))
return self return self
class DependencyAwareCache(BasicCache):
"""
A cache implementation that tracks dependencies between nodes and manages
their execution and caching accordingly. It extends the BasicCache class.
Nodes are removed from this cache once all of their descendants have been
executed.
"""
def __init__(self, key_class):
"""
Initialize the DependencyAwareCache.
Args:
key_class: The class used for generating cache keys.
"""
super().__init__(key_class)
self.descendants = {} # Maps node_id -> set of descendant node_ids
self.ancestors = {} # Maps node_id -> set of ancestor node_ids
self.executed_nodes = set() # Tracks nodes that have been executed
def set_prompt(self, dynprompt, node_ids, is_changed_cache):
"""
Clear the entire cache and rebuild the dependency graph.
Args:
dynprompt: The dynamic prompt object containing node information.
node_ids: List of node IDs to initialize the cache for.
is_changed_cache: Flag indicating if the cache has changed.
"""
# Clear all existing cache data
self.cache.clear()
self.subcaches.clear()
self.descendants.clear()
self.ancestors.clear()
self.executed_nodes.clear()
# Call the parent method to initialize the cache with the new prompt
super().set_prompt(dynprompt, node_ids, is_changed_cache)
# Rebuild the dependency graph
self._build_dependency_graph(dynprompt, node_ids)
def _build_dependency_graph(self, dynprompt, node_ids):
"""
Build the dependency graph for all nodes.
Args:
dynprompt: The dynamic prompt object containing node information.
node_ids: List of node IDs to build the graph for.
"""
self.descendants.clear()
self.ancestors.clear()
for node_id in node_ids:
self.descendants[node_id] = set()
self.ancestors[node_id] = set()
for node_id in node_ids:
inputs = dynprompt.get_node(node_id)["inputs"]
for input_data in inputs.values():
if is_link(input_data): # Check if the input is a link to another node
ancestor_id = input_data[0]
self.descendants[ancestor_id].add(node_id)
self.ancestors[node_id].add(ancestor_id)
def set(self, node_id, value):
"""
Mark a node as executed and store its value in the cache.
Args:
node_id: The ID of the node to store.
value: The value to store for the node.
"""
self._set_immediate(node_id, value)
self.executed_nodes.add(node_id)
self._cleanup_ancestors(node_id)
def get(self, node_id):
"""
Retrieve the cached value for a node.
Args:
node_id: The ID of the node to retrieve.
Returns:
The cached value for the node.
"""
return self._get_immediate(node_id)
def ensure_subcache_for(self, node_id, children_ids):
"""
Ensure a subcache exists for a node and update dependencies.
Args:
node_id: The ID of the parent node.
children_ids: List of child node IDs to associate with the parent node.
Returns:
The subcache object for the node.
"""
subcache = super()._ensure_subcache(node_id, children_ids)
for child_id in children_ids:
self.descendants[node_id].add(child_id)
self.ancestors[child_id].add(node_id)
return subcache
def _cleanup_ancestors(self, node_id):
"""
Check if ancestors of a node can be removed from the cache.
Args:
node_id: The ID of the node whose ancestors are to be checked.
"""
for ancestor_id in self.ancestors.get(node_id, []):
if ancestor_id in self.executed_nodes:
# Remove ancestor if all its descendants have been executed
if all(descendant in self.executed_nodes for descendant in self.descendants[ancestor_id]):
self._remove_node(ancestor_id)
def _remove_node(self, node_id):
"""
Remove a node from the cache.
Args:
node_id: The ID of the node to remove.
"""
cache_key = self.cache_key_set.get_data_key(node_id)
if cache_key in self.cache:
del self.cache[cache_key]
subcache_key = self.cache_key_set.get_subcache_key(node_id)
if subcache_key in self.subcaches:
del self.subcaches[subcache_key]
def clean_unused(self):
"""
Clean up unused nodes. This is a no-op for this cache implementation.
"""
pass
def recursive_debug_dump(self):
"""
Dump the cache and dependency graph for debugging.
Returns:
A list containing the cache state and dependency graph.
"""
result = super().recursive_debug_dump()
result.append({
"descendants": self.descendants,
"ancestors": self.ancestors,
"executed_nodes": list(self.executed_nodes),
})
return result

View File

@ -1,6 +1,9 @@
import nodes from __future__ import annotations
from typing import Type, Literal
import nodes
from comfy_execution.graph_utils import is_link from comfy_execution.graph_utils import is_link
from comfy.comfy_types.node_typing import ComfyNodeABC, InputTypeDict, InputTypeOptions
class DependencyCycleError(Exception): class DependencyCycleError(Exception):
pass pass
@ -54,7 +57,22 @@ class DynamicPrompt:
def get_original_prompt(self): def get_original_prompt(self):
return self.original_prompt return self.original_prompt
def get_input_info(class_def, input_name, valid_inputs=None): def get_input_info(
class_def: Type[ComfyNodeABC],
input_name: str,
valid_inputs: InputTypeDict | None = None
) -> tuple[str, Literal["required", "optional", "hidden"], InputTypeOptions] | tuple[None, None, None]:
"""Get the input type, category, and extra info for a given input name.
Arguments:
class_def: The class definition of the node.
input_name: The name of the input to get info for.
valid_inputs: The valid inputs for the node, or None to use the class_def.INPUT_TYPES().
Returns:
tuple[str, str, dict] | tuple[None, None, None]: The input type, category, and extra info for the input name.
"""
valid_inputs = valid_inputs or class_def.INPUT_TYPES() valid_inputs = valid_inputs or class_def.INPUT_TYPES()
input_info = None input_info = None
input_category = None input_category = None
@ -126,7 +144,7 @@ class TopologicalSort:
from_node_id, from_socket = value from_node_id, from_socket = value
if subgraph_nodes is not None and from_node_id not in subgraph_nodes: if subgraph_nodes is not None and from_node_id not in subgraph_nodes:
continue continue
input_type, input_category, input_info = self.get_input_info(unique_id, input_name) _, _, input_info = self.get_input_info(unique_id, input_name)
is_lazy = input_info is not None and "lazy" in input_info and input_info["lazy"] is_lazy = input_info is not None and "lazy" in input_info and input_info["lazy"]
if (include_lazy or not is_lazy) and not self.is_cached(from_node_id): if (include_lazy or not is_lazy) and not self.is_cached(from_node_id):
node_ids.append(from_node_id) node_ids.append(from_node_id)

View File

@ -15,7 +15,7 @@ import nodes
import comfy.model_management import comfy.model_management
from comfy_execution.graph import get_input_info, ExecutionList, DynamicPrompt, ExecutionBlocker from comfy_execution.graph import get_input_info, ExecutionList, DynamicPrompt, ExecutionBlocker
from comfy_execution.graph_utils import is_link, GraphBuilder from comfy_execution.graph_utils import is_link, GraphBuilder
from comfy_execution.caching import HierarchicalCache, LRUCache, CacheKeySetInputSignature, CacheKeySetID from comfy_execution.caching import HierarchicalCache, LRUCache, DependencyAwareCache, CacheKeySetInputSignature, CacheKeySetID
from comfy_execution.validation import validate_node_input from comfy_execution.validation import validate_node_input
class ExecutionResult(Enum): class ExecutionResult(Enum):
@ -59,20 +59,27 @@ class IsChangedCache:
self.is_changed[node_id] = node["is_changed"] self.is_changed[node_id] = node["is_changed"]
return self.is_changed[node_id] return self.is_changed[node_id]
class CacheSet:
def __init__(self, lru_size=None):
if lru_size is None or lru_size == 0:
self.init_classic_cache()
else:
self.init_lru_cache(lru_size)
self.all = [self.outputs, self.ui, self.objects]
# Useful for those with ample RAM/VRAM -- allows experimenting without class CacheType(Enum):
# blowing away the cache every time CLASSIC = 0
def init_lru_cache(self, cache_size): LRU = 1
self.outputs = LRUCache(CacheKeySetInputSignature, max_size=cache_size) DEPENDENCY_AWARE = 2
self.ui = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
self.objects = HierarchicalCache(CacheKeySetID)
class CacheSet:
def __init__(self, cache_type=None, cache_size=None):
if cache_type == CacheType.DEPENDENCY_AWARE:
self.init_dependency_aware_cache()
logging.info("Disabling intermediate node cache.")
elif cache_type == CacheType.LRU:
if cache_size is None:
cache_size = 0
self.init_lru_cache(cache_size)
logging.info("Using LRU cache")
else:
self.init_classic_cache()
self.all = [self.outputs, self.ui, self.objects]
# Performs like the old cache -- dump data ASAP # Performs like the old cache -- dump data ASAP
def init_classic_cache(self): def init_classic_cache(self):
@ -80,6 +87,17 @@ class CacheSet:
self.ui = HierarchicalCache(CacheKeySetInputSignature) self.ui = HierarchicalCache(CacheKeySetInputSignature)
self.objects = HierarchicalCache(CacheKeySetID) self.objects = HierarchicalCache(CacheKeySetID)
def init_lru_cache(self, cache_size):
self.outputs = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
self.ui = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
self.objects = HierarchicalCache(CacheKeySetID)
# only hold cached items while the decendents have not executed
def init_dependency_aware_cache(self):
self.outputs = DependencyAwareCache(CacheKeySetInputSignature)
self.ui = DependencyAwareCache(CacheKeySetInputSignature)
self.objects = DependencyAwareCache(CacheKeySetID)
def recursive_debug_dump(self): def recursive_debug_dump(self):
result = { result = {
"outputs": self.outputs.recursive_debug_dump(), "outputs": self.outputs.recursive_debug_dump(),
@ -93,7 +111,7 @@ def get_input_data(inputs, class_def, unique_id, outputs=None, dynprompt=None, e
missing_keys = {} missing_keys = {}
for x in inputs: for x in inputs:
input_data = inputs[x] input_data = inputs[x]
input_type, input_category, input_info = get_input_info(class_def, x, valid_inputs) _, input_category, input_info = get_input_info(class_def, x, valid_inputs)
def mark_missing(): def mark_missing():
missing_keys[x] = True missing_keys[x] = True
input_data_all[x] = (None,) input_data_all[x] = (None,)
@ -414,13 +432,14 @@ def execute(server, dynprompt, caches, current_item, extra_data, executed, promp
return (ExecutionResult.SUCCESS, None, None) return (ExecutionResult.SUCCESS, None, None)
class PromptExecutor: class PromptExecutor:
def __init__(self, server, lru_size=None): def __init__(self, server, cache_type=False, cache_size=None):
self.lru_size = lru_size self.cache_size = cache_size
self.cache_type = cache_type
self.server = server self.server = server
self.reset() self.reset()
def reset(self): def reset(self):
self.caches = CacheSet(self.lru_size) self.caches = CacheSet(cache_type=self.cache_type, cache_size=self.cache_size)
self.status_messages = [] self.status_messages = []
self.success = True self.success = True
@ -555,7 +574,7 @@ def validate_inputs(prompt, item, validated):
received_types = {} received_types = {}
for x in valid_inputs: for x in valid_inputs:
type_input, input_category, extra_info = get_input_info(obj_class, x, class_inputs) input_type, input_category, extra_info = get_input_info(obj_class, x, class_inputs)
assert extra_info is not None assert extra_info is not None
if x not in inputs: if x not in inputs:
if input_category == "required": if input_category == "required":
@ -571,7 +590,7 @@ def validate_inputs(prompt, item, validated):
continue continue
val = inputs[x] val = inputs[x]
info = (type_input, extra_info) info = (input_type, extra_info)
if isinstance(val, list): if isinstance(val, list):
if len(val) != 2: if len(val) != 2:
error = { error = {
@ -592,8 +611,8 @@ def validate_inputs(prompt, item, validated):
r = nodes.NODE_CLASS_MAPPINGS[o_class_type].RETURN_TYPES r = nodes.NODE_CLASS_MAPPINGS[o_class_type].RETURN_TYPES
received_type = r[val[1]] received_type = r[val[1]]
received_types[x] = received_type received_types[x] = received_type
if 'input_types' not in validate_function_inputs and not validate_node_input(received_type, type_input): if 'input_types' not in validate_function_inputs and not validate_node_input(received_type, input_type):
details = f"{x}, received_type({received_type}) mismatch input_type({type_input})" details = f"{x}, received_type({received_type}) mismatch input_type({input_type})"
error = { error = {
"type": "return_type_mismatch", "type": "return_type_mismatch",
"message": "Return type mismatch between linked nodes", "message": "Return type mismatch between linked nodes",
@ -641,22 +660,22 @@ def validate_inputs(prompt, item, validated):
val = val["__value__"] val = val["__value__"]
inputs[x] = val inputs[x] = val
if type_input == "INT": if input_type == "INT":
val = int(val) val = int(val)
inputs[x] = val inputs[x] = val
if type_input == "FLOAT": if input_type == "FLOAT":
val = float(val) val = float(val)
inputs[x] = val inputs[x] = val
if type_input == "STRING": if input_type == "STRING":
val = str(val) val = str(val)
inputs[x] = val inputs[x] = val
if type_input == "BOOLEAN": if input_type == "BOOLEAN":
val = bool(val) val = bool(val)
inputs[x] = val inputs[x] = val
except Exception as ex: except Exception as ex:
error = { error = {
"type": "invalid_input_type", "type": "invalid_input_type",
"message": f"Failed to convert an input value to a {type_input} value", "message": f"Failed to convert an input value to a {input_type} value",
"details": f"{x}, {val}, {ex}", "details": f"{x}, {val}, {ex}",
"extra_info": { "extra_info": {
"input_name": x, "input_name": x,
@ -696,18 +715,19 @@ def validate_inputs(prompt, item, validated):
errors.append(error) errors.append(error)
continue continue
if isinstance(type_input, list): if isinstance(input_type, list):
if val not in type_input: combo_options = input_type
if val not in combo_options:
input_config = info input_config = info
list_info = "" list_info = ""
# Don't send back gigantic lists like if they're lots of # Don't send back gigantic lists like if they're lots of
# scanned model filepaths # scanned model filepaths
if len(type_input) > 20: if len(combo_options) > 20:
list_info = f"(list of length {len(type_input)})" list_info = f"(list of length {len(combo_options)})"
input_config = None input_config = None
else: else:
list_info = str(type_input) list_info = str(combo_options)
error = { error = {
"type": "value_not_in_list", "type": "value_not_in_list",

View File

@ -156,7 +156,13 @@ def cuda_malloc_warning():
def prompt_worker(q, server_instance): def prompt_worker(q, server_instance):
current_time: float = 0.0 current_time: float = 0.0
e = execution.PromptExecutor(server_instance, lru_size=args.cache_lru) cache_type = execution.CacheType.CLASSIC
if args.cache_lru > 0:
cache_type = execution.CacheType.LRU
elif args.cache_none:
cache_type = execution.CacheType.DEPENDENCY_AWARE
e = execution.PromptExecutor(server_instance, cache_type=cache_type, cache_size=args.cache_lru)
last_gc_collect = 0 last_gc_collect = 0
need_gc = False need_gc = False
gc_collect_interval = 10.0 gc_collect_interval = 10.0

View File

@ -1,4 +1,4 @@
comfyui-frontend-package==1.14.6 comfyui-frontend-package==1.15.13
torch torch
torchsde torchsde
torchvision torchvision

View File

@ -48,7 +48,7 @@ async def send_socket_catch_exception(function, message):
@web.middleware @web.middleware
async def cache_control(request: web.Request, handler): async def cache_control(request: web.Request, handler):
response: web.Response = await handler(request) response: web.Response = await handler(request)
if request.path.endswith('.js') or request.path.endswith('.css'): if request.path.endswith('.js') or request.path.endswith('.css') or request.path.endswith('index.json'):
response.headers.setdefault('Cache-Control', 'no-cache') response.headers.setdefault('Cache-Control', 'no-cache')
return response return response