Compare commits

...

16 Commits

Author SHA1 Message Date
Kohaku-Blueleaf
b8bac6558a
Merge e8f3bc5ab7 into 22ad513c72 2025-04-11 08:18:20 -04:00
comfyanonymous
22ad513c72 Refactor node cache code to more easily add other types of cache. 2025-04-11 07:16:52 -04:00
Chargeuk
ed945a1790
Dependency Aware Node Caching for low RAM/VRAM machines (#7509)
* add dependency aware cache that removed a cached node as soon as all of its decendents have executed. This allows users with lower RAM to run workflows they would otherwise not be able to run. The downside is that every workflow will fully run each time even if no nodes have changed.

* remove test code

* tidy code
2025-04-11 06:55:51 -04:00
Chenlei Hu
f9207c6936
Update frontend to 1.15 (#7564) 2025-04-11 06:46:20 -04:00
Christian Byrne
8ad7477647
dont cache templates index (#7569) 2025-04-11 06:06:53 -04:00
Kohaku-Blueleaf
e8f3bc5ab7 Finalize the modularized weight adapter impl
* LoRA/LoHa/LoKr/GLoRA working well
* Removed TONS of code in lora.py
2025-04-09 09:16:52 +08:00
Kohaku-Blueleaf
889f94773a Remove unused import 2025-04-08 22:01:43 +08:00
Kohaku-Blueleaf
ff050275ab Use correct v list 2025-04-08 18:48:58 +08:00
Kohaku-Blueleaf
a220e5ca80 Fix typing syntax error 2025-04-08 18:46:53 +08:00
Kohaku-Blueleaf
726fdfcaa0 Fix import error 2025-04-08 18:46:43 +08:00
Kohaku-Blueleaf
c792fad88b
Merge branch 'comfyanonymous:master' into kbl-new-lora 2025-04-08 18:39:46 +08:00
Kohaku-Blueleaf
88d9168df0
Sync (#1)
* Allow disabling pe in flux code for some other models.

* Initial Hunyuan3Dv2 implementation.

Supports the multiview, mini, turbo models and VAEs.

* Fix orientation of hunyuan 3d model.

* A few fixes for the hunyuan3d models.

* Update frontend to 1.13 (#7331)

* Add backend primitive nodes (#7328)

* Add backend primitive nodes

* Add control after generate to int primitive

* Nodes to convert images to YUV and back.

Can be used to convert an image to black and white.

* Update frontend to 1.14 (#7343)

* Native LotusD Implementation (#7125)

* draft pass at a native comfy implementation of Lotus-D depth and normal est

* fix model_sampling kludges

* fix ruff

---------

Co-authored-by: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com>

* Automatically set the right sampling type for lotus.

* support output normal and lineart once (#7290)

* [nit] Format error strings (#7345)

* ComfyUI version v0.3.27

* Fallback to pytorch attention if sage attention fails.

* Add model merging node for WAN 2.1

* Add Hunyuan3D to readme.

* Support more float8 types.

* Add CFGZeroStar node.

Works on all models that use a negative prompt but is meant for rectified
flow models.

* Support the WAN 2.1 fun control models.

Use the new WanFunControlToVideo node.

* Add WanFunInpaintToVideo node for the Wan fun inpaint models.

* Update frontend to 1.14.6 (#7416)

Cherry-pick the fix: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3252

* Don't error if wan concat image has extra channels.

* ltxv: fix preprocessing exception when compression is 0. (#7431)

* Remove useless code.

* Fix latent composite node not working when source has alpha.

* Fix alpha channel mismatch on destination in ImageCompositeMasked

* Add option to store TE in bf16 (#7461)

* User missing (#7439)

* Ensuring a 401 error is returned when user data is not found in multi-user context.

* Returning a 401 error when provided comfy-user does not exists on server side.

* Fix comment.

This function does not support quads.

* MLU memory optimization (#7470)

Co-authored-by: huzhan <huzhan@cambricon.com>

* Fix alpha image issue in more nodes.

* Fix problem.

* Disable partial offloading of audio VAE.

* Add activations_shape info in UNet models (#7482)

* Add activations_shape info in UNet models

* activations_shape should be a list

* Support 512 siglip model.

* Show a proper error to the user when a vision model file is invalid.

* Support the wan fun reward loras.

---------

Co-authored-by: comfyanonymous <comfyanonymous@protonmail.com>
Co-authored-by: Chenlei Hu <hcl@comfy.org>
Co-authored-by: thot experiment <94414189+thot-experiment@users.noreply.github.com>
Co-authored-by: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com>
Co-authored-by: Terry Jia <terryjia88@gmail.com>
Co-authored-by: Michael Kupchick <michael@lightricks.com>
Co-authored-by: BVH <82035780+bvhari@users.noreply.github.com>
Co-authored-by: Laurent Erignoux <lerignoux@gmail.com>
Co-authored-by: BiologicalExplosion <49753622+BiologicalExplosion@users.noreply.github.com>
Co-authored-by: huzhan <huzhan@cambricon.com>
Co-authored-by: Raphael Walker <slickytail.mc@gmail.com>
2025-04-08 18:38:44 +08:00
Kohaku-Blueleaf
84317474fd lint 2025-04-02 09:31:24 +08:00
Kohaku-Blueleaf
c40686eb42 Utilize new weight adapter in lora.py
For calculate weight I implement a fallback mechnism temporary for dev
2025-04-02 09:22:05 +08:00
Kohaku-Blueleaf
4774c3244e Initial impl
LoRA load/calculate_weight
LoHa/LoKr/GLoRA load
2025-04-02 09:21:39 +08:00
Kohaku-Blueleaf
6fb4cc0179 Weight Adapter Scheme 2025-04-02 09:21:17 +08:00
13 changed files with 791 additions and 324 deletions

View File

@ -101,6 +101,7 @@ parser.add_argument("--preview-size", type=int, default=512, help="Sets the maxi
cache_group = parser.add_mutually_exclusive_group()
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
cache_group.add_argument("--cache-none", action="store_true", help="Reduced RAM/VRAM usage at the expense of executing every node for each run.")
attn_group = parser.add_mutually_exclusive_group()
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")

View File

@ -20,6 +20,7 @@ from __future__ import annotations
import comfy.utils
import comfy.model_management
import comfy.model_base
import comfy.weight_adapter as weight_adapter
import logging
import torch
@ -49,139 +50,12 @@ def load_lora(lora, to_load, log_missing=True):
dora_scale = lora[dora_scale_name]
loaded_keys.add(dora_scale_name)
reshape_name = "{}.reshape_weight".format(x)
reshape = None
if reshape_name in lora.keys():
try:
reshape = lora[reshape_name].tolist()
loaded_keys.add(reshape_name)
except:
pass
regular_lora = "{}.lora_up.weight".format(x)
diffusers_lora = "{}_lora.up.weight".format(x)
diffusers2_lora = "{}.lora_B.weight".format(x)
diffusers3_lora = "{}.lora.up.weight".format(x)
mochi_lora = "{}.lora_B".format(x)
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
A_name = None
if regular_lora in lora.keys():
A_name = regular_lora
B_name = "{}.lora_down.weight".format(x)
mid_name = "{}.lora_mid.weight".format(x)
elif diffusers_lora in lora.keys():
A_name = diffusers_lora
B_name = "{}_lora.down.weight".format(x)
mid_name = None
elif diffusers2_lora in lora.keys():
A_name = diffusers2_lora
B_name = "{}.lora_A.weight".format(x)
mid_name = None
elif diffusers3_lora in lora.keys():
A_name = diffusers3_lora
B_name = "{}.lora.down.weight".format(x)
mid_name = None
elif mochi_lora in lora.keys():
A_name = mochi_lora
B_name = "{}.lora_A".format(x)
mid_name = None
elif transformers_lora in lora.keys():
A_name = transformers_lora
B_name ="{}.lora_linear_layer.down.weight".format(x)
mid_name = None
if A_name is not None:
mid = None
if mid_name is not None and mid_name in lora.keys():
mid = lora[mid_name]
loaded_keys.add(mid_name)
patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid, dora_scale, reshape))
loaded_keys.add(A_name)
loaded_keys.add(B_name)
######## loha
hada_w1_a_name = "{}.hada_w1_a".format(x)
hada_w1_b_name = "{}.hada_w1_b".format(x)
hada_w2_a_name = "{}.hada_w2_a".format(x)
hada_w2_b_name = "{}.hada_w2_b".format(x)
hada_t1_name = "{}.hada_t1".format(x)
hada_t2_name = "{}.hada_t2".format(x)
if hada_w1_a_name in lora.keys():
hada_t1 = None
hada_t2 = None
if hada_t1_name in lora.keys():
hada_t1 = lora[hada_t1_name]
hada_t2 = lora[hada_t2_name]
loaded_keys.add(hada_t1_name)
loaded_keys.add(hada_t2_name)
patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale))
loaded_keys.add(hada_w1_a_name)
loaded_keys.add(hada_w1_b_name)
loaded_keys.add(hada_w2_a_name)
loaded_keys.add(hada_w2_b_name)
######## lokr
lokr_w1_name = "{}.lokr_w1".format(x)
lokr_w2_name = "{}.lokr_w2".format(x)
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
lokr_t2_name = "{}.lokr_t2".format(x)
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
lokr_w1 = None
if lokr_w1_name in lora.keys():
lokr_w1 = lora[lokr_w1_name]
loaded_keys.add(lokr_w1_name)
lokr_w2 = None
if lokr_w2_name in lora.keys():
lokr_w2 = lora[lokr_w2_name]
loaded_keys.add(lokr_w2_name)
lokr_w1_a = None
if lokr_w1_a_name in lora.keys():
lokr_w1_a = lora[lokr_w1_a_name]
loaded_keys.add(lokr_w1_a_name)
lokr_w1_b = None
if lokr_w1_b_name in lora.keys():
lokr_w1_b = lora[lokr_w1_b_name]
loaded_keys.add(lokr_w1_b_name)
lokr_w2_a = None
if lokr_w2_a_name in lora.keys():
lokr_w2_a = lora[lokr_w2_a_name]
loaded_keys.add(lokr_w2_a_name)
lokr_w2_b = None
if lokr_w2_b_name in lora.keys():
lokr_w2_b = lora[lokr_w2_b_name]
loaded_keys.add(lokr_w2_b_name)
lokr_t2 = None
if lokr_t2_name in lora.keys():
lokr_t2 = lora[lokr_t2_name]
loaded_keys.add(lokr_t2_name)
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale))
#glora
a1_name = "{}.a1.weight".format(x)
a2_name = "{}.a2.weight".format(x)
b1_name = "{}.b1.weight".format(x)
b2_name = "{}.b2.weight".format(x)
if a1_name in lora:
patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale))
loaded_keys.add(a1_name)
loaded_keys.add(a2_name)
loaded_keys.add(b1_name)
loaded_keys.add(b2_name)
for adapter_cls in weight_adapter.adapters:
adapter = adapter_cls.load(x, lora, alpha, dora_scale, loaded_keys)
if adapter is not None:
patch_dict[to_load[x]] = adapter
loaded_keys.update(adapter.loaded_keys)
continue
w_norm_name = "{}.w_norm".format(x)
b_norm_name = "{}.b_norm".format(x)
@ -408,26 +282,6 @@ def model_lora_keys_unet(model, key_map={}):
return key_map
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function):
dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, intermediate_dtype)
lora_diff *= alpha
weight_calc = weight + function(lora_diff).type(weight.dtype)
weight_norm = (
weight_calc.transpose(0, 1)
.reshape(weight_calc.shape[1], -1)
.norm(dim=1, keepdim=True)
.reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
.transpose(0, 1)
)
weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
if strength != 1.0:
weight_calc -= weight
weight += strength * (weight_calc)
else:
weight[:] = weight_calc
return weight
def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Tensor:
"""
Pad a tensor to a new shape with zeros.
@ -482,6 +336,16 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32, ori
if isinstance(v, list):
v = (calculate_weight(v[1:], v[0][1](comfy.model_management.cast_to_device(v[0][0], weight.device, intermediate_dtype, copy=True), inplace=True), key, intermediate_dtype=intermediate_dtype), )
if isinstance(v, weight_adapter.WeightAdapterBase):
output = v.calculate_weight(weight, key, strength, strength_model, offset, function, intermediate_dtype, original_weights)
if output is None:
logging.warning("Calculate Weight Failed: {} {}".format(v.name, key))
else:
weight = output
if old_weight is not None:
weight = old_weight
continue
if len(v) == 1:
patch_type = "diff"
elif len(v) == 2:
@ -508,157 +372,6 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32, ori
diff_weight = comfy.model_management.cast_to_device(target_weight, weight.device, intermediate_dtype) - \
comfy.model_management.cast_to_device(original_weights[key][0][0], weight.device, intermediate_dtype)
weight += function(strength * comfy.model_management.cast_to_device(diff_weight, weight.device, weight.dtype))
elif patch_type == "lora": #lora/locon
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, intermediate_dtype)
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, intermediate_dtype)
dora_scale = v[4]
reshape = v[5]
if reshape is not None:
weight = pad_tensor_to_shape(weight, reshape)
if v[2] is not None:
alpha = v[2] / mat2.shape[0]
else:
alpha = 1.0
if v[3] is not None:
#locon mid weights, hopefully the math is fine because I didn't properly test it
mat3 = comfy.model_management.cast_to_device(v[3], weight.device, intermediate_dtype)
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
try:
lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(patch_type, key, e))
elif patch_type == "lokr":
w1 = v[0]
w2 = v[1]
w1_a = v[3]
w1_b = v[4]
w2_a = v[5]
w2_b = v[6]
t2 = v[7]
dora_scale = v[8]
dim = None
if w1 is None:
dim = w1_b.shape[0]
w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1_b, weight.device, intermediate_dtype))
else:
w1 = comfy.model_management.cast_to_device(w1, weight.device, intermediate_dtype)
if w2 is None:
dim = w2_b.shape[0]
if t2 is None:
w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype))
else:
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype))
else:
w2 = comfy.model_management.cast_to_device(w2, weight.device, intermediate_dtype)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
if v[2] is not None and dim is not None:
alpha = v[2] / dim
else:
alpha = 1.0
try:
lora_diff = torch.kron(w1, w2).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(patch_type, key, e))
elif patch_type == "loha":
w1a = v[0]
w1b = v[1]
if v[2] is not None:
alpha = v[2] / w1b.shape[0]
else:
alpha = 1.0
w2a = v[3]
w2b = v[4]
dora_scale = v[7]
if v[5] is not None: #cp decomposition
t1 = v[5]
t2 = v[6]
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t1, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype))
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype))
else:
m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype))
m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype))
try:
lora_diff = (m1 * m2).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(patch_type, key, e))
elif patch_type == "glora":
dora_scale = v[5]
old_glora = False
if v[3].shape[1] == v[2].shape[0] == v[0].shape[0] == v[1].shape[1]:
rank = v[0].shape[0]
old_glora = True
if v[3].shape[0] == v[2].shape[1] == v[0].shape[1] == v[1].shape[0]:
if old_glora and v[1].shape[0] == weight.shape[0] and weight.shape[0] == weight.shape[1]:
pass
else:
old_glora = False
rank = v[1].shape[0]
a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, intermediate_dtype)
a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, intermediate_dtype)
b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, intermediate_dtype)
b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, intermediate_dtype)
if v[4] is not None:
alpha = v[4] / rank
else:
alpha = 1.0
try:
if old_glora:
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1).to(dtype=intermediate_dtype), a2), a1)).reshape(weight.shape) #old lycoris glora
else:
if weight.dim() > 2:
lora_diff = torch.einsum("o i ..., i j -> o j ...", torch.einsum("o i ..., i j -> o j ...", weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
else:
lora_diff = torch.mm(torch.mm(weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
lora_diff += torch.mm(b1, b2).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(patch_type, key, e))
else:
logging.warning("patch type not recognized {} {}".format(patch_type, key))

View File

@ -0,0 +1,13 @@
from .base import WeightAdapterBase
from .lora import LoRAAdapter
from .loha import LoHaAdapter
from .lokr import LoKrAdapter
from .glora import GLoRAAdapter
adapters: list[type[WeightAdapterBase]] = [
LoRAAdapter,
LoHaAdapter,
LoKrAdapter,
GLoRAAdapter,
]

View File

@ -0,0 +1,94 @@
from typing import Optional
import torch
import torch.nn as nn
import comfy.model_management
class WeightAdapterBase:
name: str
loaded_keys: set[str]
weights: list[torch.Tensor]
@classmethod
def load(cls, x: str, lora: dict[str, torch.Tensor]) -> Optional["WeightAdapterBase"]:
raise NotImplementedError
def to_train(self) -> "WeightAdapterTrainBase":
raise NotImplementedError
def calculate_weight(
self,
weight,
key,
strength,
strength_model,
offset,
function,
intermediate_dtype=torch.float32,
original_weight=None,
):
raise NotImplementedError
class WeightAdapterTrainBase(nn.Module):
def __init__(self):
super().__init__()
# [TODO] Collaborate with LoRA training PR #7032
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function):
dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, intermediate_dtype)
lora_diff *= alpha
weight_calc = weight + function(lora_diff).type(weight.dtype)
weight_norm = (
weight_calc.transpose(0, 1)
.reshape(weight_calc.shape[1], -1)
.norm(dim=1, keepdim=True)
.reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
.transpose(0, 1)
)
weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
if strength != 1.0:
weight_calc -= weight
weight += strength * (weight_calc)
else:
weight[:] = weight_calc
return weight
def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Tensor:
"""
Pad a tensor to a new shape with zeros.
Args:
tensor (torch.Tensor): The original tensor to be padded.
new_shape (List[int]): The desired shape of the padded tensor.
Returns:
torch.Tensor: A new tensor padded with zeros to the specified shape.
Note:
If the new shape is smaller than the original tensor in any dimension,
the original tensor will be truncated in that dimension.
"""
if any([new_shape[i] < tensor.shape[i] for i in range(len(new_shape))]):
raise ValueError("The new shape must be larger than the original tensor in all dimensions")
if len(new_shape) != len(tensor.shape):
raise ValueError("The new shape must have the same number of dimensions as the original tensor")
# Create a new tensor filled with zeros
padded_tensor = torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device)
# Create slicing tuples for both tensors
orig_slices = tuple(slice(0, dim) for dim in tensor.shape)
new_slices = tuple(slice(0, dim) for dim in tensor.shape)
# Copy the original tensor into the new tensor
padded_tensor[new_slices] = tensor[orig_slices]
return padded_tensor

View File

@ -0,0 +1,93 @@
import logging
from typing import Optional
import torch
import comfy.model_management
from .base import WeightAdapterBase, weight_decompose
class GLoRAAdapter(WeightAdapterBase):
name = "glora"
def __init__(self, loaded_keys, weights):
self.loaded_keys = loaded_keys
self.weights = weights
@classmethod
def load(
cls,
x: str,
lora: dict[str, torch.Tensor],
alpha: float,
dora_scale: torch.Tensor,
loaded_keys: set[str] = None,
) -> Optional["GLoRAAdapter"]:
if loaded_keys is None:
loaded_keys = set()
a1_name = "{}.a1.weight".format(x)
a2_name = "{}.a2.weight".format(x)
b1_name = "{}.b1.weight".format(x)
b2_name = "{}.b2.weight".format(x)
if a1_name in lora:
weights = (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale)
loaded_keys.add(a1_name)
loaded_keys.add(a2_name)
loaded_keys.add(b1_name)
loaded_keys.add(b2_name)
return cls(loaded_keys, weights)
else:
return None
def calculate_weight(
self,
weight,
key,
strength,
strength_model,
offset,
function,
intermediate_dtype=torch.float32,
original_weight=None,
):
v = self.weights
dora_scale = v[5]
old_glora = False
if v[3].shape[1] == v[2].shape[0] == v[0].shape[0] == v[1].shape[1]:
rank = v[0].shape[0]
old_glora = True
if v[3].shape[0] == v[2].shape[1] == v[0].shape[1] == v[1].shape[0]:
if old_glora and v[1].shape[0] == weight.shape[0] and weight.shape[0] == weight.shape[1]:
pass
else:
old_glora = False
rank = v[1].shape[0]
a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, intermediate_dtype)
a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, intermediate_dtype)
b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, intermediate_dtype)
b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, intermediate_dtype)
if v[4] is not None:
alpha = v[4] / rank
else:
alpha = 1.0
try:
if old_glora:
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1).to(dtype=intermediate_dtype), a2), a1)).reshape(weight.shape) #old lycoris glora
else:
if weight.dim() > 2:
lora_diff = torch.einsum("o i ..., i j -> o j ...", torch.einsum("o i ..., i j -> o j ...", weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
else:
lora_diff = torch.mm(torch.mm(weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
lora_diff += torch.mm(b1, b2).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(self.name, key, e))
return weight

View File

@ -0,0 +1,100 @@
import logging
from typing import Optional
import torch
import comfy.model_management
from .base import WeightAdapterBase, weight_decompose
class LoHaAdapter(WeightAdapterBase):
name = "loha"
def __init__(self, loaded_keys, weights):
self.loaded_keys = loaded_keys
self.weights = weights
@classmethod
def load(
cls,
x: str,
lora: dict[str, torch.Tensor],
alpha: float,
dora_scale: torch.Tensor,
loaded_keys: set[str] = None,
) -> Optional["LoHaAdapter"]:
if loaded_keys is None:
loaded_keys = set()
hada_w1_a_name = "{}.hada_w1_a".format(x)
hada_w1_b_name = "{}.hada_w1_b".format(x)
hada_w2_a_name = "{}.hada_w2_a".format(x)
hada_w2_b_name = "{}.hada_w2_b".format(x)
hada_t1_name = "{}.hada_t1".format(x)
hada_t2_name = "{}.hada_t2".format(x)
if hada_w1_a_name in lora.keys():
hada_t1 = None
hada_t2 = None
if hada_t1_name in lora.keys():
hada_t1 = lora[hada_t1_name]
hada_t2 = lora[hada_t2_name]
loaded_keys.add(hada_t1_name)
loaded_keys.add(hada_t2_name)
weights = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale)
loaded_keys.add(hada_w1_a_name)
loaded_keys.add(hada_w1_b_name)
loaded_keys.add(hada_w2_a_name)
loaded_keys.add(hada_w2_b_name)
return cls(loaded_keys, weights)
else:
return None
def calculate_weight(
self,
weight,
key,
strength,
strength_model,
offset,
function,
intermediate_dtype=torch.float32,
original_weight=None,
):
v = self.weights
w1a = v[0]
w1b = v[1]
if v[2] is not None:
alpha = v[2] / w1b.shape[0]
else:
alpha = 1.0
w2a = v[3]
w2b = v[4]
dora_scale = v[7]
if v[5] is not None: #cp decomposition
t1 = v[5]
t2 = v[6]
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t1, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype))
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype))
else:
m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype))
m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype))
try:
lora_diff = (m1 * m2).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(self.name, key, e))
return weight

View File

@ -0,0 +1,133 @@
import logging
from typing import Optional
import torch
import comfy.model_management
from .base import WeightAdapterBase, weight_decompose
class LoKrAdapter(WeightAdapterBase):
name = "lokr"
def __init__(self, loaded_keys, weights):
self.loaded_keys = loaded_keys
self.weights = weights
@classmethod
def load(
cls,
x: str,
lora: dict[str, torch.Tensor],
alpha: float,
dora_scale: torch.Tensor,
loaded_keys: set[str] = None,
) -> Optional["LoKrAdapter"]:
if loaded_keys is None:
loaded_keys = set()
lokr_w1_name = "{}.lokr_w1".format(x)
lokr_w2_name = "{}.lokr_w2".format(x)
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
lokr_t2_name = "{}.lokr_t2".format(x)
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
lokr_w1 = None
if lokr_w1_name in lora.keys():
lokr_w1 = lora[lokr_w1_name]
loaded_keys.add(lokr_w1_name)
lokr_w2 = None
if lokr_w2_name in lora.keys():
lokr_w2 = lora[lokr_w2_name]
loaded_keys.add(lokr_w2_name)
lokr_w1_a = None
if lokr_w1_a_name in lora.keys():
lokr_w1_a = lora[lokr_w1_a_name]
loaded_keys.add(lokr_w1_a_name)
lokr_w1_b = None
if lokr_w1_b_name in lora.keys():
lokr_w1_b = lora[lokr_w1_b_name]
loaded_keys.add(lokr_w1_b_name)
lokr_w2_a = None
if lokr_w2_a_name in lora.keys():
lokr_w2_a = lora[lokr_w2_a_name]
loaded_keys.add(lokr_w2_a_name)
lokr_w2_b = None
if lokr_w2_b_name in lora.keys():
lokr_w2_b = lora[lokr_w2_b_name]
loaded_keys.add(lokr_w2_b_name)
lokr_t2 = None
if lokr_t2_name in lora.keys():
lokr_t2 = lora[lokr_t2_name]
loaded_keys.add(lokr_t2_name)
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
weights = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale)
return cls(loaded_keys, weights)
else:
return None
def calculate_weight(
self,
weight,
key,
strength,
strength_model,
offset,
function,
intermediate_dtype=torch.float32,
original_weight=None,
):
v = self.weights
w1 = v[0]
w2 = v[1]
w1_a = v[3]
w1_b = v[4]
w2_a = v[5]
w2_b = v[6]
t2 = v[7]
dora_scale = v[8]
dim = None
if w1 is None:
dim = w1_b.shape[0]
w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1_b, weight.device, intermediate_dtype))
else:
w1 = comfy.model_management.cast_to_device(w1, weight.device, intermediate_dtype)
if w2 is None:
dim = w2_b.shape[0]
if t2 is None:
w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype))
else:
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype))
else:
w2 = comfy.model_management.cast_to_device(w2, weight.device, intermediate_dtype)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
if v[2] is not None and dim is not None:
alpha = v[2] / dim
else:
alpha = 1.0
try:
lora_diff = torch.kron(w1, w2).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(self.name, key, e))
return weight

View File

@ -0,0 +1,142 @@
import logging
from typing import Optional
import torch
import comfy.model_management
from .base import WeightAdapterBase, weight_decompose, pad_tensor_to_shape
class LoRAAdapter(WeightAdapterBase):
name = "lora"
def __init__(self, loaded_keys, weights):
self.loaded_keys = loaded_keys
self.weights = weights
@classmethod
def load(
cls,
x: str,
lora: dict[str, torch.Tensor],
alpha: float,
dora_scale: torch.Tensor,
loaded_keys: set[str] = None,
) -> Optional["LoRAAdapter"]:
if loaded_keys is None:
loaded_keys = set()
reshape_name = "{}.reshape_weight".format(x)
regular_lora = "{}.lora_up.weight".format(x)
diffusers_lora = "{}_lora.up.weight".format(x)
diffusers2_lora = "{}.lora_B.weight".format(x)
diffusers3_lora = "{}.lora.up.weight".format(x)
mochi_lora = "{}.lora_B".format(x)
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
A_name = None
if regular_lora in lora.keys():
A_name = regular_lora
B_name = "{}.lora_down.weight".format(x)
mid_name = "{}.lora_mid.weight".format(x)
elif diffusers_lora in lora.keys():
A_name = diffusers_lora
B_name = "{}_lora.down.weight".format(x)
mid_name = None
elif diffusers2_lora in lora.keys():
A_name = diffusers2_lora
B_name = "{}.lora_A.weight".format(x)
mid_name = None
elif diffusers3_lora in lora.keys():
A_name = diffusers3_lora
B_name = "{}.lora.down.weight".format(x)
mid_name = None
elif mochi_lora in lora.keys():
A_name = mochi_lora
B_name = "{}.lora_A".format(x)
mid_name = None
elif transformers_lora in lora.keys():
A_name = transformers_lora
B_name = "{}.lora_linear_layer.down.weight".format(x)
mid_name = None
if A_name is not None:
mid = None
if mid_name is not None and mid_name in lora.keys():
mid = lora[mid_name]
loaded_keys.add(mid_name)
reshape = None
if reshape_name in lora.keys():
try:
reshape = lora[reshape_name].tolist()
loaded_keys.add(reshape_name)
except:
pass
weights = (lora[A_name], lora[B_name], alpha, mid, dora_scale, reshape)
loaded_keys.add(A_name)
loaded_keys.add(B_name)
return cls(loaded_keys, weights)
else:
return None
def calculate_weight(
self,
weight,
key,
strength,
strength_model,
offset,
function,
intermediate_dtype=torch.float32,
original_weight=None,
):
v = self.weights
mat1 = comfy.model_management.cast_to_device(
v[0], weight.device, intermediate_dtype
)
mat2 = comfy.model_management.cast_to_device(
v[1], weight.device, intermediate_dtype
)
dora_scale = v[4]
reshape = v[5]
if reshape is not None:
weight = pad_tensor_to_shape(weight, reshape)
if v[2] is not None:
alpha = v[2] / mat2.shape[0]
else:
alpha = 1.0
if v[3] is not None:
# locon mid weights, hopefully the math is fine because I didn't properly test it
mat3 = comfy.model_management.cast_to_device(
v[3], weight.device, intermediate_dtype
)
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
mat2 = (
torch.mm(
mat2.transpose(0, 1).flatten(start_dim=1),
mat3.transpose(0, 1).flatten(start_dim=1),
)
.reshape(final_shape)
.transpose(0, 1)
)
try:
lora_diff = torch.mm(
mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)
).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(
dora_scale,
weight,
lora_diff,
alpha,
strength,
intermediate_dtype,
function,
)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(self.name, key, e))
return weight

View File

@ -316,3 +316,156 @@ class LRUCache(BasicCache):
self.children[cache_key].append(self.cache_key_set.get_data_key(child_id))
return self
class DependencyAwareCache(BasicCache):
"""
A cache implementation that tracks dependencies between nodes and manages
their execution and caching accordingly. It extends the BasicCache class.
Nodes are removed from this cache once all of their descendants have been
executed.
"""
def __init__(self, key_class):
"""
Initialize the DependencyAwareCache.
Args:
key_class: The class used for generating cache keys.
"""
super().__init__(key_class)
self.descendants = {} # Maps node_id -> set of descendant node_ids
self.ancestors = {} # Maps node_id -> set of ancestor node_ids
self.executed_nodes = set() # Tracks nodes that have been executed
def set_prompt(self, dynprompt, node_ids, is_changed_cache):
"""
Clear the entire cache and rebuild the dependency graph.
Args:
dynprompt: The dynamic prompt object containing node information.
node_ids: List of node IDs to initialize the cache for.
is_changed_cache: Flag indicating if the cache has changed.
"""
# Clear all existing cache data
self.cache.clear()
self.subcaches.clear()
self.descendants.clear()
self.ancestors.clear()
self.executed_nodes.clear()
# Call the parent method to initialize the cache with the new prompt
super().set_prompt(dynprompt, node_ids, is_changed_cache)
# Rebuild the dependency graph
self._build_dependency_graph(dynprompt, node_ids)
def _build_dependency_graph(self, dynprompt, node_ids):
"""
Build the dependency graph for all nodes.
Args:
dynprompt: The dynamic prompt object containing node information.
node_ids: List of node IDs to build the graph for.
"""
self.descendants.clear()
self.ancestors.clear()
for node_id in node_ids:
self.descendants[node_id] = set()
self.ancestors[node_id] = set()
for node_id in node_ids:
inputs = dynprompt.get_node(node_id)["inputs"]
for input_data in inputs.values():
if is_link(input_data): # Check if the input is a link to another node
ancestor_id = input_data[0]
self.descendants[ancestor_id].add(node_id)
self.ancestors[node_id].add(ancestor_id)
def set(self, node_id, value):
"""
Mark a node as executed and store its value in the cache.
Args:
node_id: The ID of the node to store.
value: The value to store for the node.
"""
self._set_immediate(node_id, value)
self.executed_nodes.add(node_id)
self._cleanup_ancestors(node_id)
def get(self, node_id):
"""
Retrieve the cached value for a node.
Args:
node_id: The ID of the node to retrieve.
Returns:
The cached value for the node.
"""
return self._get_immediate(node_id)
def ensure_subcache_for(self, node_id, children_ids):
"""
Ensure a subcache exists for a node and update dependencies.
Args:
node_id: The ID of the parent node.
children_ids: List of child node IDs to associate with the parent node.
Returns:
The subcache object for the node.
"""
subcache = super()._ensure_subcache(node_id, children_ids)
for child_id in children_ids:
self.descendants[node_id].add(child_id)
self.ancestors[child_id].add(node_id)
return subcache
def _cleanup_ancestors(self, node_id):
"""
Check if ancestors of a node can be removed from the cache.
Args:
node_id: The ID of the node whose ancestors are to be checked.
"""
for ancestor_id in self.ancestors.get(node_id, []):
if ancestor_id in self.executed_nodes:
# Remove ancestor if all its descendants have been executed
if all(descendant in self.executed_nodes for descendant in self.descendants[ancestor_id]):
self._remove_node(ancestor_id)
def _remove_node(self, node_id):
"""
Remove a node from the cache.
Args:
node_id: The ID of the node to remove.
"""
cache_key = self.cache_key_set.get_data_key(node_id)
if cache_key in self.cache:
del self.cache[cache_key]
subcache_key = self.cache_key_set.get_subcache_key(node_id)
if subcache_key in self.subcaches:
del self.subcaches[subcache_key]
def clean_unused(self):
"""
Clean up unused nodes. This is a no-op for this cache implementation.
"""
pass
def recursive_debug_dump(self):
"""
Dump the cache and dependency graph for debugging.
Returns:
A list containing the cache state and dependency graph.
"""
result = super().recursive_debug_dump()
result.append({
"descendants": self.descendants,
"ancestors": self.ancestors,
"executed_nodes": list(self.executed_nodes),
})
return result

View File

@ -15,7 +15,7 @@ import nodes
import comfy.model_management
from comfy_execution.graph import get_input_info, ExecutionList, DynamicPrompt, ExecutionBlocker
from comfy_execution.graph_utils import is_link, GraphBuilder
from comfy_execution.caching import HierarchicalCache, LRUCache, CacheKeySetInputSignature, CacheKeySetID
from comfy_execution.caching import HierarchicalCache, LRUCache, DependencyAwareCache, CacheKeySetInputSignature, CacheKeySetID
from comfy_execution.validation import validate_node_input
class ExecutionResult(Enum):
@ -59,20 +59,27 @@ class IsChangedCache:
self.is_changed[node_id] = node["is_changed"]
return self.is_changed[node_id]
class CacheSet:
def __init__(self, lru_size=None):
if lru_size is None or lru_size == 0:
self.init_classic_cache()
else:
self.init_lru_cache(lru_size)
self.all = [self.outputs, self.ui, self.objects]
# Useful for those with ample RAM/VRAM -- allows experimenting without
# blowing away the cache every time
def init_lru_cache(self, cache_size):
self.outputs = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
self.ui = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
self.objects = HierarchicalCache(CacheKeySetID)
class CacheType(Enum):
CLASSIC = 0
LRU = 1
DEPENDENCY_AWARE = 2
class CacheSet:
def __init__(self, cache_type=None, cache_size=None):
if cache_type == CacheType.DEPENDENCY_AWARE:
self.init_dependency_aware_cache()
logging.info("Disabling intermediate node cache.")
elif cache_type == CacheType.LRU:
if cache_size is None:
cache_size = 0
self.init_lru_cache(cache_size)
logging.info("Using LRU cache")
else:
self.init_classic_cache()
self.all = [self.outputs, self.ui, self.objects]
# Performs like the old cache -- dump data ASAP
def init_classic_cache(self):
@ -80,6 +87,17 @@ class CacheSet:
self.ui = HierarchicalCache(CacheKeySetInputSignature)
self.objects = HierarchicalCache(CacheKeySetID)
def init_lru_cache(self, cache_size):
self.outputs = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
self.ui = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
self.objects = HierarchicalCache(CacheKeySetID)
# only hold cached items while the decendents have not executed
def init_dependency_aware_cache(self):
self.outputs = DependencyAwareCache(CacheKeySetInputSignature)
self.ui = DependencyAwareCache(CacheKeySetInputSignature)
self.objects = DependencyAwareCache(CacheKeySetID)
def recursive_debug_dump(self):
result = {
"outputs": self.outputs.recursive_debug_dump(),
@ -414,13 +432,14 @@ def execute(server, dynprompt, caches, current_item, extra_data, executed, promp
return (ExecutionResult.SUCCESS, None, None)
class PromptExecutor:
def __init__(self, server, lru_size=None):
self.lru_size = lru_size
def __init__(self, server, cache_type=False, cache_size=None):
self.cache_size = cache_size
self.cache_type = cache_type
self.server = server
self.reset()
def reset(self):
self.caches = CacheSet(self.lru_size)
self.caches = CacheSet(cache_type=self.cache_type, cache_size=self.cache_size)
self.status_messages = []
self.success = True

View File

@ -156,7 +156,13 @@ def cuda_malloc_warning():
def prompt_worker(q, server_instance):
current_time: float = 0.0
e = execution.PromptExecutor(server_instance, lru_size=args.cache_lru)
cache_type = execution.CacheType.CLASSIC
if args.cache_lru > 0:
cache_type = execution.CacheType.LRU
elif args.cache_none:
cache_type = execution.CacheType.DEPENDENCY_AWARE
e = execution.PromptExecutor(server_instance, cache_type=cache_type, cache_size=args.cache_lru)
last_gc_collect = 0
need_gc = False
gc_collect_interval = 10.0

View File

@ -1,4 +1,4 @@
comfyui-frontend-package==1.14.6
comfyui-frontend-package==1.15.13
torch
torchsde
torchvision

View File

@ -48,7 +48,7 @@ async def send_socket_catch_exception(function, message):
@web.middleware
async def cache_control(request: web.Request, handler):
response: web.Response = await handler(request)
if request.path.endswith('.js') or request.path.endswith('.css'):
if request.path.endswith('.js') or request.path.endswith('.css') or request.path.endswith('index.json'):
response.headers.setdefault('Cache-Control', 'no-cache')
return response