Fixed model merging issue with scaled fp8.

This commit is contained in:
comfyanonymous 2024-10-20 06:24:31 -04:00
parent 471cd3eace
commit f9f9faface
3 changed files with 40 additions and 29 deletions

View File

@ -415,7 +415,7 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32):
weight *= strength_model weight *= strength_model
if isinstance(v, list): if isinstance(v, list):
v = (calculate_weight(v[1:], comfy.model_management.cast_to_device(v[0], weight.device, intermediate_dtype, copy=True), key, intermediate_dtype=intermediate_dtype), ) v = (calculate_weight(v[1:], v[0][1](comfy.model_management.cast_to_device(v[0][0], weight.device, intermediate_dtype, copy=True), inplace=True), key, intermediate_dtype=intermediate_dtype), )
if len(v) == 1: if len(v) == 1:
patch_type = "diff" patch_type = "diff"

View File

@ -94,6 +94,31 @@ class LowVramPatch:
return comfy.float.stochastic_rounding(comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype), weight.dtype, seed=string_to_seed(self.key)) return comfy.float.stochastic_rounding(comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype), weight.dtype, seed=string_to_seed(self.key))
return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype) return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype)
def get_key_weight(model, key):
set_func = None
convert_func = None
op_keys = key.rsplit('.', 1)
if len(op_keys) < 2:
weight = comfy.utils.get_attr(model, key)
else:
op = comfy.utils.get_attr(model, op_keys[0])
try:
set_func = getattr(op, "set_{}".format(op_keys[1]))
except AttributeError:
pass
try:
convert_func = getattr(op, "convert_{}".format(op_keys[1]))
except AttributeError:
pass
weight = getattr(op, op_keys[1])
if convert_func is not None:
weight = comfy.utils.get_attr(model, key)
return weight, set_func, convert_func
class ModelPatcher: class ModelPatcher:
def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False): def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False):
self.size = size self.size = size
@ -294,14 +319,16 @@ class ModelPatcher:
if not k.startswith(filter_prefix): if not k.startswith(filter_prefix):
continue continue
bk = self.backup.get(k, None) bk = self.backup.get(k, None)
weight, set_func, convert_func = get_key_weight(self.model, k)
if bk is not None: if bk is not None:
weight = bk.weight weight = bk.weight
else: if convert_func is None:
weight = model_sd[k] convert_func = lambda a, **kwargs: a
if k in self.patches: if k in self.patches:
p[k] = [weight] + self.patches[k] p[k] = [(weight, convert_func)] + self.patches[k]
else: else:
p[k] = (weight,) p[k] = [(weight, convert_func)]
return p return p
def model_state_dict(self, filter_prefix=None): def model_state_dict(self, filter_prefix=None):
@ -317,27 +344,7 @@ class ModelPatcher:
if key not in self.patches: if key not in self.patches:
return return
set_func = None weight, set_func, convert_func = get_key_weight(self.model, key)
convert_func = None
op_keys = key.rsplit('.', 1)
if len(op_keys) < 2:
weight = comfy.utils.get_attr(self.model, key)
else:
op = comfy.utils.get_attr(self.model, op_keys[0])
try:
set_func = getattr(op, "set_{}".format(op_keys[1]))
except AttributeError:
pass
try:
convert_func = getattr(op, "convert_{}".format(op_keys[1]))
except AttributeError:
pass
weight = getattr(op, op_keys[1])
if convert_func is not None:
weight = comfy.utils.get_attr(self.model, key)
inplace_update = self.weight_inplace_update or inplace_update inplace_update = self.weight_inplace_update or inplace_update
if key not in self.backup: if key not in self.backup:
@ -348,7 +355,7 @@ class ModelPatcher:
else: else:
temp_weight = weight.to(torch.float32, copy=True) temp_weight = weight.to(torch.float32, copy=True)
if convert_func is not None: if convert_func is not None:
temp_weight = convert_func(temp_weight) temp_weight = convert_func(temp_weight, inplace=True)
out_weight = comfy.lora.calculate_weight(self.patches[key], temp_weight, key) out_weight = comfy.lora.calculate_weight(self.patches[key], temp_weight, key)
if set_func is None: if set_func is None:

View File

@ -309,7 +309,11 @@ def scaled_fp8_ops(fp8_matrix_mult=False):
weight, bias = cast_bias_weight(self, input) weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias) return torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias)
def convert_weight(self, weight): def convert_weight(self, weight, inplace=False, **kwargs):
if inplace:
weight *= self.scale_weight.to(device=weight.device, dtype=weight.dtype)
return weight
else:
return weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype) return weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype)
def set_weight(self, weight, inplace_update=False, seed=None, **kwargs): def set_weight(self, weight, inplace_update=False, seed=None, **kwargs):