mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Optimize some unneeded if conditions in the sampling code.
This commit is contained in:
parent
0ec513d877
commit
f2e844e054
@ -129,8 +129,13 @@ def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None,
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
||||
sigma_hat = sigmas[i] * (gamma + 1)
|
||||
if s_churn > 0:
|
||||
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
||||
sigma_hat = sigmas[i] * (gamma + 1)
|
||||
else:
|
||||
gamma = 0
|
||||
sigma_hat = sigmas[i]
|
||||
|
||||
if gamma > 0:
|
||||
eps = torch.randn_like(x) * s_noise
|
||||
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
||||
@ -170,7 +175,13 @@ def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None,
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
||||
if s_churn > 0:
|
||||
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
||||
sigma_hat = sigmas[i] * (gamma + 1)
|
||||
else:
|
||||
gamma = 0
|
||||
sigma_hat = sigmas[i]
|
||||
|
||||
sigma_hat = sigmas[i] * (gamma + 1)
|
||||
if gamma > 0:
|
||||
eps = torch.randn_like(x) * s_noise
|
||||
@ -199,8 +210,13 @@ def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None,
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
||||
sigma_hat = sigmas[i] * (gamma + 1)
|
||||
if s_churn > 0:
|
||||
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
||||
sigma_hat = sigmas[i] * (gamma + 1)
|
||||
else:
|
||||
gamma = 0
|
||||
sigma_hat = sigmas[i]
|
||||
|
||||
if gamma > 0:
|
||||
eps = torch.randn_like(x) * s_noise
|
||||
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
||||
|
Loading…
Reference in New Issue
Block a user