Adding command line option and moving model_sampling to the cpu

This commit is contained in:
David McCloskey 2025-01-17 15:16:49 -06:00
parent 6a737925b1
commit f258af8c01
3 changed files with 10 additions and 2 deletions

View File

@ -73,6 +73,7 @@ fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in
fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.")
parser.add_argument("--cpu-vae", action="store_true", help="Run the VAE on the CPU.")
parser.add_argument("--cpu-model-sampling", action="store_true", help="Run the model sampling on the CPU.")
fpte_group = parser.add_mutually_exclusive_group()
fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Store text encoder weights in fp8 (e4m3fn variant).")

View File

@ -766,6 +766,11 @@ def vae_device():
return torch.device("cpu")
return get_torch_device()
def model_sampling_device():
if args.cpu_model_sampling:
return torch.device("cpu")
return get_torch_device()
def vae_offload_device():
if args.gpu_only:
return get_torch_device()

View File

@ -923,8 +923,10 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
if inital_load_device != torch.device("cpu"):
logging.info("loaded diffusion model directly to GPU")
model_management.load_models_gpu([model_patcher], force_full_load=True)
# damcclos: move the model_sampling back to the CPU. The work needed for this is not worth the gpu.
model_patcher.model.model_sampling.to(torch.device("cpu"))
#damcclos: move the model_sampling back to the CPU. The work needed for this is not worth the gpu.
model_sampling_device = model_management.model_sampling_device()
if model_sampling_device == torch.device("cpu"):
model_patcher.model.model_sampling.to(model_sampling_device)
return (model_patcher, clip, vae, clipvision)