generate predictable noise in batches

Such that if seed=1, batchsize=2, it generates one image of seed=1 and one image of seed=2, where previously it generated one image of seed=1 and one image of seed=unobtanium
This commit is contained in:
Alex "mcmonkey" Goodwin 2023-09-08 01:38:00 -07:00
parent 326577d04c
commit efa53c9e92

View File

@ -10,12 +10,15 @@ def prepare_noise(latent_image, seed, noise_inds=None):
creates random noise given a latent image and a seed. creates random noise given a latent image and a seed.
optional arg skip can be used to skip and discard x number of noise generations for a given seed optional arg skip can be used to skip and discard x number of noise generations for a given seed
""" """
generator = torch.manual_seed(seed)
if noise_inds is None:
return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
unique_inds, inverse = np.unique(noise_inds, return_inverse=True)
noises = [] noises = []
if noise_inds is None:
for i in range(latent_image.size()[0]):
generator = torch.manual_seed(seed + i)
noises.append(torch.randn(latent_image[i].size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu"))
return torch.stack(noises, axis=0)
generator = torch.manual_seed(seed)
unique_inds, inverse = np.unique(noise_inds, return_inverse=True)
for i in range(unique_inds[-1]+1): for i in range(unique_inds[-1]+1):
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu") noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
if i in unique_inds: if i in unique_inds: