mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-03-15 05:57:20 +00:00
Remove space
This commit is contained in:
parent
8a8327fa73
commit
eb40f9377b
@ -17,27 +17,27 @@ def get_coefficients_exponential_positive(order, interval_start, interval_end, t
|
||||
interval_start_cov = (1 + tau ** 2) * interval_start
|
||||
|
||||
if order == 0:
|
||||
return (torch.exp(interval_end_cov)
|
||||
return (torch.exp(interval_end_cov)
|
||||
* (1 - torch.exp(-(interval_end_cov - interval_start_cov)))
|
||||
/ ((1 + tau ** 2))
|
||||
)
|
||||
elif order == 1:
|
||||
return (torch.exp(interval_end_cov)
|
||||
return (torch.exp(interval_end_cov)
|
||||
* ((interval_end_cov - 1) - (interval_start_cov - 1) * torch.exp(-(interval_end_cov - interval_start_cov)))
|
||||
/ ((1 + tau ** 2) ** 2)
|
||||
)
|
||||
elif order == 2:
|
||||
return (torch.exp(interval_end_cov)
|
||||
* ((interval_end_cov ** 2 - 2 * interval_end_cov + 2)
|
||||
- (interval_start_cov ** 2 - 2 * interval_start_cov + 2)
|
||||
return (torch.exp(interval_end_cov)
|
||||
* ((interval_end_cov ** 2 - 2 * interval_end_cov + 2)
|
||||
- (interval_start_cov ** 2 - 2 * interval_start_cov + 2)
|
||||
* torch.exp(-(interval_end_cov - interval_start_cov))
|
||||
)
|
||||
/ ((1 + tau ** 2) ** 3)
|
||||
)
|
||||
elif order == 3:
|
||||
return (torch.exp(interval_end_cov)
|
||||
return (torch.exp(interval_end_cov)
|
||||
* ((interval_end_cov ** 3 - 3 * interval_end_cov ** 2 + 6 * interval_end_cov - 6)
|
||||
- (interval_start_cov ** 3 - 3 * interval_start_cov ** 2 + 6 * interval_start_cov - 6)
|
||||
- (interval_start_cov ** 3 - 3 * interval_start_cov ** 2 + 6 * interval_start_cov - 6)
|
||||
* torch.exp(-(interval_end_cov - interval_start_cov))
|
||||
)
|
||||
/ ((1 + tau ** 2) ** 4)
|
||||
@ -53,7 +53,7 @@ def lagrange_polynomial_coefficient(order, lambda_list):
|
||||
if order == 0:
|
||||
return [[1.0]]
|
||||
elif order == 1:
|
||||
return [[1.0 / (lambda_list[0] - lambda_list[1]), -lambda_list[1] / (lambda_list[0] - lambda_list[1])],
|
||||
return [[1.0 / (lambda_list[0] - lambda_list[1]), -lambda_list[1] / (lambda_list[0] - lambda_list[1])],
|
||||
[1.0 / (lambda_list[1] - lambda_list[0]), -lambda_list[0] / (lambda_list[1] - lambda_list[0])]]
|
||||
elif order == 2:
|
||||
denominator1 = (lambda_list[0] - lambda_list[1]) * (lambda_list[0] - lambda_list[2])
|
||||
@ -79,12 +79,12 @@ def lagrange_polynomial_coefficient(order, lambda_list):
|
||||
(-lambda_list[0] * lambda_list[2] * lambda_list[3]) / denominator2],
|
||||
|
||||
[1.0 / denominator3,
|
||||
(-lambda_list[0] - lambda_list[1] - lambda_list[3]) / denominator3,
|
||||
(lambda_list[0] * lambda_list[1] + lambda_list[0] * lambda_list[3] + lambda_list[1] * lambda_list[3]) / denominator3,
|
||||
(-lambda_list[0] - lambda_list[1] - lambda_list[3]) / denominator3,
|
||||
(lambda_list[0] * lambda_list[1] + lambda_list[0] * lambda_list[3] + lambda_list[1] * lambda_list[3]) / denominator3,
|
||||
(-lambda_list[0] * lambda_list[1] * lambda_list[3]) / denominator3],
|
||||
|
||||
[1.0 / denominator4,
|
||||
(-lambda_list[0] - lambda_list[1] - lambda_list[2]) / denominator4,
|
||||
(-lambda_list[0] - lambda_list[1] - lambda_list[2]) / denominator4,
|
||||
(lambda_list[0] * lambda_list[1] + lambda_list[0] * lambda_list[2] + lambda_list[1] * lambda_list[2]) / denominator4,
|
||||
(-lambda_list[0] * lambda_list[1] * lambda_list[2]) / denominator4]
|
||||
]
|
||||
@ -122,11 +122,11 @@ def adams_bashforth_update_few_steps(order, x, tau, model_prev_list, sigma_prev_
|
||||
# ODE case
|
||||
# gradient_coefficients[0] += 1.0 * torch.exp(lambda_t) * (h ** 2 / 2 - (h - 1 + torch.exp(-h))) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2]))
|
||||
# gradient_coefficients[1] -= 1.0 * torch.exp(lambda_t) * (h ** 2 / 2 - (h - 1 + torch.exp(-h))) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2]))
|
||||
gradient_coefficients[0] += (1.0 * torch.exp((1 + tau ** 2) * lambda_t)
|
||||
* (h ** 2 / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / ((1 + tau ** 2) ** 2))
|
||||
gradient_coefficients[0] += (1.0 * torch.exp((1 + tau ** 2) * lambda_t)
|
||||
* (h ** 2 / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / ((1 + tau ** 2) ** 2))
|
||||
/ (lambda_prev - lambda_list[1])
|
||||
)
|
||||
gradient_coefficients[1] -= (1.0 * torch.exp((1 + tau ** 2) * lambda_t)
|
||||
gradient_coefficients[1] -= (1.0 * torch.exp((1 + tau ** 2) * lambda_t)
|
||||
* (h ** 2 / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / ((1 + tau ** 2) ** 2))
|
||||
/ (lambda_prev - lambda_list[1])
|
||||
)
|
||||
@ -152,7 +152,7 @@ def adams_moulton_update_few_steps(order, x, tau, model_prev_list, sigma_prev_li
|
||||
lambda_prev = lambda_list[1] if order >= 2 else t_fn(sigma_prev)
|
||||
h = lambda_t - lambda_prev
|
||||
gradient_coefficients = get_coefficients_fn(order, lambda_prev, lambda_t, lambda_list, tau)
|
||||
|
||||
|
||||
if order == 2: ## if order = 2 we do a modification that does not influence the convergence order similar to UniPC. Note: This is used only for few steps sampling.
|
||||
# The added term is O(h^3). Empirically we find it will slightly improve the image quality.
|
||||
# ODE case
|
||||
@ -166,7 +166,7 @@ def adams_moulton_update_few_steps(order, x, tau, model_prev_list, sigma_prev_li
|
||||
* (h / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h)))
|
||||
/ ((1 + tau ** 2) ** 2 * h))
|
||||
)
|
||||
|
||||
|
||||
for i in range(order):
|
||||
gradient_part += gradient_coefficients[i] * model_prev_list[-(i + 1)]
|
||||
gradient_part *= (1 + tau ** 2) * sigma * torch.exp(- tau ** 2 * lambda_t)
|
||||
@ -178,4 +178,4 @@ def default_tau_func(sigma, eta, eta_start_sigma, eta_end_sigma):
|
||||
if eta == 0:
|
||||
# Pure ODE
|
||||
return 0
|
||||
return eta if eta_end_sigma <= sigma <= eta_start_sigma else 0
|
||||
return eta if eta_end_sigma <= sigma <= eta_start_sigma else 0
|
||||
|
@ -1146,7 +1146,7 @@ def sample_deis(model, x, sigmas, extra_args=None, callback=None, disable=None,
|
||||
def sample_sa_solver(model, x, sigmas, extra_args=None, callback=None, disable=False, predictor_order=3, corrector_order=4, pc_mode="PEC", tau_func=None, noise_sampler=None):
|
||||
if len(sigmas) <= 1:
|
||||
return x
|
||||
|
||||
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
if tau_func is None:
|
||||
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
|
||||
@ -1172,7 +1172,7 @@ def sample_sa_solver(model, x, sigmas, extra_args=None, callback=None, disable=F
|
||||
# Lower order final
|
||||
predictor_order_used = min(predictor_order, i, len(sigmas) - i - 1)
|
||||
corrector_order_used = min(corrector_order, i + 1, len(sigmas) - i + 1)
|
||||
|
||||
|
||||
tau_val = tau(sigma)
|
||||
noise = None if tau_val == 0 else noise_sampler(sigma, sigmas[i + 1])
|
||||
|
||||
@ -1183,13 +1183,13 @@ def sample_sa_solver(model, x, sigmas, extra_args=None, callback=None, disable=F
|
||||
|
||||
# Evaluation step
|
||||
denoised = model(x_p, sigma * s_in, **extra_args)
|
||||
model_prev_list.append(denoised)
|
||||
model_prev_list.append(denoised)
|
||||
|
||||
# Corrector step
|
||||
if corrector_order_used > 0:
|
||||
x = sa_solver.adams_moulton_update_few_steps(order=corrector_order_used, x=x, tau=tau_val,
|
||||
model_prev_list=model_prev_list, sigma_prev_list=sigma_prev_list,
|
||||
noise=noise, sigma=sigma)
|
||||
noise=noise, sigma=sigma)
|
||||
else:
|
||||
x = x_p
|
||||
|
||||
@ -1205,7 +1205,7 @@ def sample_sa_solver(model, x, sigmas, extra_args=None, callback=None, disable=F
|
||||
if len(model_prev_list) > max(predictor_order, corrector_order):
|
||||
del model_prev_list[0]
|
||||
del sigma_prev_list[0]
|
||||
|
||||
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'denoised': model_prev_list[-1]})
|
||||
|
||||
|
@ -435,7 +435,7 @@ class SamplerSASolver:
|
||||
start_sigma = model_sampling.percent_to_sigma(eta_start_percent)
|
||||
end_sigma = model_sampling.percent_to_sigma(eta_end_percent)
|
||||
tau_func = partial(sa_solver.default_tau_func, eta=eta, eta_start_sigma=start_sigma, eta_end_sigma=end_sigma)
|
||||
|
||||
|
||||
if pc_mode == 'PEC':
|
||||
sampler_name = "sa_solver"
|
||||
else:
|
||||
|
Loading…
Reference in New Issue
Block a user