Add a way to set model dtype and ops from load_checkpoint_guess_config.

This commit is contained in:
comfyanonymous 2024-08-11 08:50:34 -04:00
parent 0d82a798a5
commit e9589d6d92
3 changed files with 52 additions and 7 deletions

View File

@ -1,3 +1,21 @@
"""
This file is part of ComfyUI.
Copyright (C) 2024 Comfy
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import torch import torch
import logging import logging
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
@ -77,10 +95,13 @@ class BaseModel(torch.nn.Module):
self.device = device self.device = device
if not unet_config.get("disable_unet_model_creation", False): if not unet_config.get("disable_unet_model_creation", False):
if model_config.custom_operations is None:
if self.manual_cast_dtype is not None: if self.manual_cast_dtype is not None:
operations = comfy.ops.manual_cast operations = comfy.ops.manual_cast
else: else:
operations = comfy.ops.disable_weight_init operations = comfy.ops.disable_weight_init
else:
operations = model_config.custom_operations
self.diffusion_model = unet_model(**unet_config, device=device, operations=operations) self.diffusion_model = unet_model(**unet_config, device=device, operations=operations)
if comfy.model_management.force_channels_last(): if comfy.model_management.force_channels_last():
self.diffusion_model.to(memory_format=torch.channels_last) self.diffusion_model.to(memory_format=torch.channels_last)

View File

@ -498,14 +498,14 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
return (model, clip, vae) return (model, clip, vae)
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True): def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}):
sd = comfy.utils.load_torch_file(ckpt_path) sd = comfy.utils.load_torch_file(ckpt_path)
out = load_state_dict_guess_config(sd, output_vae, output_clip, output_clipvision, embedding_directory, output_model) out = load_state_dict_guess_config(sd, output_vae, output_clip, output_clipvision, embedding_directory, output_model, model_options)
if out is None: if out is None:
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path)) raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
return out return out
def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True): def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}):
clip = None clip = None
clipvision = None clipvision = None
vae = None vae = None
@ -525,7 +525,12 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
if weight_dtype is not None: if weight_dtype is not None:
unet_weight_dtype.append(weight_dtype) unet_weight_dtype.append(weight_dtype)
model_config.custom_operations = model_options.get("custom_operations", None)
unet_dtype = model_options.get("weight_dtype", None)
if unet_dtype is None:
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype) unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype)
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes) manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype) model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)

View File

@ -1,3 +1,21 @@
"""
This file is part of ComfyUI.
Copyright (C) 2024 Comfy
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import torch import torch
from . import model_base from . import model_base
from . import utils from . import utils
@ -30,6 +48,7 @@ class BASE:
memory_usage_factor = 2.0 memory_usage_factor = 2.0
manual_cast_dtype = None manual_cast_dtype = None
custom_operations = None
@classmethod @classmethod
def matches(s, unet_config, state_dict=None): def matches(s, unet_config, state_dict=None):