mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
add laplace scheduler [2407.03297] (#4990)
* add laplace scheduler [2407.03297] * should be here instead lol * better settings
This commit is contained in:
parent
3326bdfd4e
commit
e7d4782736
@ -44,6 +44,17 @@ def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'):
|
|||||||
return append_zero(sigmas)
|
return append_zero(sigmas)
|
||||||
|
|
||||||
|
|
||||||
|
def get_sigmas_laplace(n, sigma_min, sigma_max, mu=0., beta=0.5, device='cpu'):
|
||||||
|
"""Constructs the noise schedule proposed by Tiankai et al. (2024). """
|
||||||
|
epsilon = 1e-5 # avoid log(0)
|
||||||
|
x = torch.linspace(0, 1, n, device=device)
|
||||||
|
clamp = lambda x: torch.clamp(x, min=sigma_min, max=sigma_max)
|
||||||
|
lmb = mu - beta * torch.sign(0.5-x) * torch.log(1 - 2 * torch.abs(0.5-x) + epsilon)
|
||||||
|
sigmas = clamp(torch.exp(lmb))
|
||||||
|
return sigmas
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def to_d(x, sigma, denoised):
|
def to_d(x, sigma, denoised):
|
||||||
"""Converts a denoiser output to a Karras ODE derivative."""
|
"""Converts a denoiser output to a Karras ODE derivative."""
|
||||||
return (x - denoised) / utils.append_dims(sigma, x.ndim)
|
return (x - denoised) / utils.append_dims(sigma, x.ndim)
|
||||||
|
@ -90,6 +90,27 @@ class PolyexponentialScheduler:
|
|||||||
sigmas = k_diffusion_sampling.get_sigmas_polyexponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
|
sigmas = k_diffusion_sampling.get_sigmas_polyexponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
|
||||||
return (sigmas, )
|
return (sigmas, )
|
||||||
|
|
||||||
|
class LaplaceScheduler:
|
||||||
|
@classmethod
|
||||||
|
def INPUT_TYPES(s):
|
||||||
|
return {"required":
|
||||||
|
{"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
|
||||||
|
"sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}),
|
||||||
|
"sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}),
|
||||||
|
"mu": ("FLOAT", {"default": 0.0, "min": -10.0, "max": 10.0, "step":0.1, "round": False}),
|
||||||
|
"beta": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 10.0, "step":0.1, "round": False}),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
RETURN_TYPES = ("SIGMAS",)
|
||||||
|
CATEGORY = "sampling/custom_sampling/schedulers"
|
||||||
|
|
||||||
|
FUNCTION = "get_sigmas"
|
||||||
|
|
||||||
|
def get_sigmas(self, steps, sigma_max, sigma_min, mu, beta):
|
||||||
|
sigmas = k_diffusion_sampling.get_sigmas_laplace(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, mu=mu, beta=beta)
|
||||||
|
return (sigmas, )
|
||||||
|
|
||||||
|
|
||||||
class SDTurboScheduler:
|
class SDTurboScheduler:
|
||||||
@classmethod
|
@classmethod
|
||||||
def INPUT_TYPES(s):
|
def INPUT_TYPES(s):
|
||||||
@ -673,6 +694,7 @@ NODE_CLASS_MAPPINGS = {
|
|||||||
"KarrasScheduler": KarrasScheduler,
|
"KarrasScheduler": KarrasScheduler,
|
||||||
"ExponentialScheduler": ExponentialScheduler,
|
"ExponentialScheduler": ExponentialScheduler,
|
||||||
"PolyexponentialScheduler": PolyexponentialScheduler,
|
"PolyexponentialScheduler": PolyexponentialScheduler,
|
||||||
|
"LaplaceScheduler": LaplaceScheduler,
|
||||||
"VPScheduler": VPScheduler,
|
"VPScheduler": VPScheduler,
|
||||||
"BetaSamplingScheduler": BetaSamplingScheduler,
|
"BetaSamplingScheduler": BetaSamplingScheduler,
|
||||||
"SDTurboScheduler": SDTurboScheduler,
|
"SDTurboScheduler": SDTurboScheduler,
|
||||||
|
Loading…
Reference in New Issue
Block a user