add openvino to torch compile

This commit is contained in:
ethan 2025-01-29 07:03:31 -08:00
parent 33e71e0e79
commit d1f61cca5e
3 changed files with 33 additions and 12 deletions

View File

@ -83,7 +83,6 @@ fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text
parser.add_argument("--force-channels-last", action="store_true", help="Force channels last format when inferencing the models.")
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
parser.add_argument("--openvino", type=str, default="GPU", help="Run OpenVINO inference engine on the specified device.")
parser.add_argument("--oneapi-device-selector", type=str, default=None, metavar="SELECTOR_STRING", help="Sets the oneAPI device(s) this instance will use.")
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize default when loading models with Intel's Extension for Pytorch.")

View File

@ -115,11 +115,6 @@ def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None
minimum_memory_required = model.memory_required([noise_shape[0]] + list(noise_shape[1:])) + inference_memory
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required)
real_model = model.model
if args.openvino and real_model.diffusion_model.__class__.__name__=="UNetModel":
import openvino.torch
import torch
print("Unet is being compiled using OpenVINO")
real_model.diffusion_model = torch.compile(real_model.diffusion_model, backend="openvino", options = {"device" : args.openvino, "model_caching" : False, "cache_dir": "./model_cache"})
return real_model, conds, models
def cleanup_models(conds, models):

View File

@ -1,21 +1,48 @@
import torch
class TorchCompileModel:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"backend": (["inductor", "cudagraphs"],),
}}
return {
"required": {
"model": ("MODEL",),
"backend": (["inductor", "cudagraphs", "openvino"],),
},
"optional": {
"openvino_device": (["CPU", "GPU", "NPU"],),
},
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "_for_testing"
EXPERIMENTAL = True
def patch(self, model, backend):
def patch(self, model, backend, openvino_device):
if backend == "openvino":
options = {"device": openvino_device}
try:
import openvino.torch
except ImportError:
raise ImportError(
"Could not import openvino python package. "
"Please install it with `pip install openvino`."
)
else:
options = None
m = model.clone()
m.add_object_patch("diffusion_model", torch.compile(model=m.get_model_object("diffusion_model"), backend=backend))
return (m, )
m.add_object_patch(
"diffusion_model",
torch.compile(
model=m.get_model_object("diffusion_model"),
backend=backend,
options=options,
),
)
return (m,)
NODE_CLASS_MAPPINGS = {
"TorchCompileModel": TorchCompileModel,