mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-03-15 14:09:36 +00:00
Merge branch 'master' into sa_solver
This commit is contained in:
commit
ce0bff9a4b
2
.github/workflows/pullrequest-ci-run.yml
vendored
2
.github/workflows/pullrequest-ci-run.yml
vendored
@ -23,7 +23,7 @@ jobs:
|
||||
runner_label: [self-hosted, Linux]
|
||||
flags: ""
|
||||
- os: windows
|
||||
runner_label: [self-hosted, win]
|
||||
runner_label: [self-hosted, Windows]
|
||||
flags: ""
|
||||
runs-on: ${{ matrix.runner_label }}
|
||||
steps:
|
||||
|
4
.github/workflows/test-ci.yml
vendored
4
.github/workflows/test-ci.yml
vendored
@ -32,7 +32,7 @@ jobs:
|
||||
runner_label: [self-hosted, Linux]
|
||||
flags: ""
|
||||
- os: windows
|
||||
runner_label: [self-hosted, win]
|
||||
runner_label: [self-hosted, Windows]
|
||||
flags: ""
|
||||
runs-on: ${{ matrix.runner_label }}
|
||||
steps:
|
||||
@ -55,7 +55,7 @@ jobs:
|
||||
torch_version: ["nightly"]
|
||||
include:
|
||||
- os: windows
|
||||
runner_label: [self-hosted, win]
|
||||
runner_label: [self-hosted, Windows]
|
||||
flags: ""
|
||||
runs-on: ${{ matrix.runner_label }}
|
||||
steps:
|
||||
|
@ -10,14 +10,14 @@ def get_logs():
|
||||
return "\n".join([formatter.format(x) for x in logs])
|
||||
|
||||
|
||||
def setup_logger(verbose: bool = False, capacity: int = 300):
|
||||
def setup_logger(log_level: str = 'INFO', capacity: int = 300):
|
||||
global logs
|
||||
if logs:
|
||||
return
|
||||
|
||||
# Setup default global logger
|
||||
logger = logging.getLogger()
|
||||
logger.setLevel(logging.DEBUG if verbose else logging.INFO)
|
||||
logger.setLevel(log_level)
|
||||
|
||||
stream_handler = logging.StreamHandler()
|
||||
stream_handler.setFormatter(logging.Formatter("%(message)s"))
|
||||
|
@ -36,7 +36,7 @@ class EnumAction(argparse.Action):
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0", help="Specify the IP address to listen on (default: 127.0.0.1). If --listen is provided without an argument, it defaults to 0.0.0.0. (listens on all)")
|
||||
parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0,::", help="Specify the IP address to listen on (default: 127.0.0.1). You can give a list of ip addresses by separating them with a comma like: 127.2.2.2,127.3.3.3 If --listen is provided without an argument, it defaults to 0.0.0.0,:: (listens on all ipv4 and ipv6)")
|
||||
parser.add_argument("--port", type=int, default=8188, help="Set the listen port.")
|
||||
parser.add_argument("--tls-keyfile", type=str, help="Path to TLS (SSL) key file. Enables TLS, makes app accessible at https://... requires --tls-certfile to function")
|
||||
parser.add_argument("--tls-certfile", type=str, help="Path to TLS (SSL) certificate file. Enables TLS, makes app accessible at https://... requires --tls-keyfile to function")
|
||||
@ -136,7 +136,7 @@ parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Dis
|
||||
|
||||
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
|
||||
|
||||
parser.add_argument("--verbose", action="store_true", help="Enables more debug prints.")
|
||||
parser.add_argument("--verbose", default='INFO', const='DEBUG', nargs="?", choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Set the logging level')
|
||||
|
||||
# The default built-in provider hosted under web/
|
||||
DEFAULT_VERSION_STRING = "comfyanonymous/ComfyUI@latest"
|
||||
|
@ -109,8 +109,7 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
||||
keys = list(sd.keys())
|
||||
for k in keys:
|
||||
if k not in u:
|
||||
t = sd.pop(k)
|
||||
del t
|
||||
sd.pop(k)
|
||||
return clip
|
||||
|
||||
def load(ckpt_path):
|
||||
|
@ -237,6 +237,7 @@ class ControlNet(ControlBase):
|
||||
if len(self.extra_concat_orig) > 0:
|
||||
to_concat = []
|
||||
for c in self.extra_concat_orig:
|
||||
c = c.to(self.cond_hint.device)
|
||||
c = comfy.utils.common_upscale(c, self.cond_hint.shape[3], self.cond_hint.shape[2], self.upscale_algorithm, "center")
|
||||
to_concat.append(comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[0]))
|
||||
self.cond_hint = torch.cat([self.cond_hint] + to_concat, dim=1)
|
||||
|
@ -1,5 +1,4 @@
|
||||
import torch
|
||||
import math
|
||||
|
||||
def calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=None):
|
||||
mantissa_scaled = torch.where(
|
||||
|
@ -1266,3 +1266,36 @@ def sample_dpmpp_2s_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback
|
||||
if sigmas[i + 1] > 0:
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_2m_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
||||
"""DPM-Solver++(2M)."""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
t_fn = lambda sigma: sigma.log().neg()
|
||||
|
||||
old_uncond_denoised = None
|
||||
uncond_denoised = None
|
||||
def post_cfg_function(args):
|
||||
nonlocal uncond_denoised
|
||||
uncond_denoised = args["uncond_denoised"]
|
||||
return args["denoised"]
|
||||
|
||||
model_options = extra_args.get("model_options", {}).copy()
|
||||
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
||||
h = t_next - t
|
||||
if old_uncond_denoised is None or sigmas[i + 1] == 0:
|
||||
denoised_mix = -torch.exp(-h) * uncond_denoised
|
||||
else:
|
||||
h_last = t - t_fn(sigmas[i - 1])
|
||||
r = h_last / h
|
||||
denoised_mix = -torch.exp(-h) * uncond_denoised - torch.expm1(-h) * (1 / (2 * r)) * (denoised - old_uncond_denoised)
|
||||
x = denoised + denoised_mix + torch.exp(-h) * x
|
||||
old_uncond_denoised = uncond_denoised
|
||||
return x
|
@ -4,6 +4,7 @@ class LatentFormat:
|
||||
scale_factor = 1.0
|
||||
latent_channels = 4
|
||||
latent_rgb_factors = None
|
||||
latent_rgb_factors_bias = None
|
||||
taesd_decoder_name = None
|
||||
|
||||
def process_in(self, latent):
|
||||
@ -30,11 +31,13 @@ class SDXL(LatentFormat):
|
||||
def __init__(self):
|
||||
self.latent_rgb_factors = [
|
||||
# R G B
|
||||
[ 0.3920, 0.4054, 0.4549],
|
||||
[-0.2634, -0.0196, 0.0653],
|
||||
[ 0.0568, 0.1687, -0.0755],
|
||||
[-0.3112, -0.2359, -0.2076]
|
||||
[ 0.3651, 0.4232, 0.4341],
|
||||
[-0.2533, -0.0042, 0.1068],
|
||||
[ 0.1076, 0.1111, -0.0362],
|
||||
[-0.3165, -0.2492, -0.2188]
|
||||
]
|
||||
self.latent_rgb_factors_bias = [ 0.1084, -0.0175, -0.0011]
|
||||
|
||||
self.taesd_decoder_name = "taesdxl_decoder"
|
||||
|
||||
class SDXL_Playground_2_5(LatentFormat):
|
||||
@ -112,23 +115,24 @@ class SD3(LatentFormat):
|
||||
self.scale_factor = 1.5305
|
||||
self.shift_factor = 0.0609
|
||||
self.latent_rgb_factors = [
|
||||
[-0.0645, 0.0177, 0.1052],
|
||||
[ 0.0028, 0.0312, 0.0650],
|
||||
[ 0.1848, 0.0762, 0.0360],
|
||||
[ 0.0944, 0.0360, 0.0889],
|
||||
[ 0.0897, 0.0506, -0.0364],
|
||||
[-0.0020, 0.1203, 0.0284],
|
||||
[ 0.0855, 0.0118, 0.0283],
|
||||
[-0.0539, 0.0658, 0.1047],
|
||||
[-0.0057, 0.0116, 0.0700],
|
||||
[-0.0412, 0.0281, -0.0039],
|
||||
[ 0.1106, 0.1171, 0.1220],
|
||||
[-0.0248, 0.0682, -0.0481],
|
||||
[ 0.0815, 0.0846, 0.1207],
|
||||
[-0.0120, -0.0055, -0.0867],
|
||||
[-0.0749, -0.0634, -0.0456],
|
||||
[-0.1418, -0.1457, -0.1259]
|
||||
[-0.0922, -0.0175, 0.0749],
|
||||
[ 0.0311, 0.0633, 0.0954],
|
||||
[ 0.1994, 0.0927, 0.0458],
|
||||
[ 0.0856, 0.0339, 0.0902],
|
||||
[ 0.0587, 0.0272, -0.0496],
|
||||
[-0.0006, 0.1104, 0.0309],
|
||||
[ 0.0978, 0.0306, 0.0427],
|
||||
[-0.0042, 0.1038, 0.1358],
|
||||
[-0.0194, 0.0020, 0.0669],
|
||||
[-0.0488, 0.0130, -0.0268],
|
||||
[ 0.0922, 0.0988, 0.0951],
|
||||
[-0.0278, 0.0524, -0.0542],
|
||||
[ 0.0332, 0.0456, 0.0895],
|
||||
[-0.0069, -0.0030, -0.0810],
|
||||
[-0.0596, -0.0465, -0.0293],
|
||||
[-0.1448, -0.1463, -0.1189]
|
||||
]
|
||||
self.latent_rgb_factors_bias = [0.2394, 0.2135, 0.1925]
|
||||
self.taesd_decoder_name = "taesd3_decoder"
|
||||
|
||||
def process_in(self, latent):
|
||||
@ -146,23 +150,24 @@ class Flux(SD3):
|
||||
self.scale_factor = 0.3611
|
||||
self.shift_factor = 0.1159
|
||||
self.latent_rgb_factors =[
|
||||
[-0.0404, 0.0159, 0.0609],
|
||||
[ 0.0043, 0.0298, 0.0850],
|
||||
[ 0.0328, -0.0749, -0.0503],
|
||||
[-0.0245, 0.0085, 0.0549],
|
||||
[ 0.0966, 0.0894, 0.0530],
|
||||
[ 0.0035, 0.0399, 0.0123],
|
||||
[ 0.0583, 0.1184, 0.1262],
|
||||
[-0.0191, -0.0206, -0.0306],
|
||||
[-0.0324, 0.0055, 0.1001],
|
||||
[ 0.0955, 0.0659, -0.0545],
|
||||
[-0.0504, 0.0231, -0.0013],
|
||||
[ 0.0500, -0.0008, -0.0088],
|
||||
[ 0.0982, 0.0941, 0.0976],
|
||||
[-0.1233, -0.0280, -0.0897],
|
||||
[-0.0005, -0.0530, -0.0020],
|
||||
[-0.1273, -0.0932, -0.0680]
|
||||
[-0.0346, 0.0244, 0.0681],
|
||||
[ 0.0034, 0.0210, 0.0687],
|
||||
[ 0.0275, -0.0668, -0.0433],
|
||||
[-0.0174, 0.0160, 0.0617],
|
||||
[ 0.0859, 0.0721, 0.0329],
|
||||
[ 0.0004, 0.0383, 0.0115],
|
||||
[ 0.0405, 0.0861, 0.0915],
|
||||
[-0.0236, -0.0185, -0.0259],
|
||||
[-0.0245, 0.0250, 0.1180],
|
||||
[ 0.1008, 0.0755, -0.0421],
|
||||
[-0.0515, 0.0201, 0.0011],
|
||||
[ 0.0428, -0.0012, -0.0036],
|
||||
[ 0.0817, 0.0765, 0.0749],
|
||||
[-0.1264, -0.0522, -0.1103],
|
||||
[-0.0280, -0.0881, -0.0499],
|
||||
[-0.1262, -0.0982, -0.0778]
|
||||
]
|
||||
self.latent_rgb_factors_bias = [-0.0329, -0.0718, -0.0851]
|
||||
self.taesd_decoder_name = "taef1_decoder"
|
||||
|
||||
def process_in(self, latent):
|
||||
|
@ -108,7 +108,7 @@ class Flux(nn.Module):
|
||||
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
||||
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
|
||||
|
||||
vec = vec + self.vector_in(y)
|
||||
vec = vec + self.vector_in(y[:,:self.params.vec_in_dim])
|
||||
txt = self.txt_in(txt)
|
||||
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
@ -151,8 +151,8 @@ class Flux(nn.Module):
|
||||
h_len = ((h + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w + (patch_size // 2)) // patch_size)
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[..., 1] = img_ids[..., 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype)[:, None]
|
||||
img_ids[..., 2] = img_ids[..., 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype)[None, :]
|
||||
img_ids[:, :, 1] = torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
|
||||
img_ids[:, :, 2] = torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
|
@ -294,6 +294,7 @@ def model_lora_keys_unet(model, key_map={}):
|
||||
unet_key = "diffusion_model.{}".format(diffusers_keys[k])
|
||||
key_lora = k[:-len(".weight")].replace(".", "_")
|
||||
key_map["lora_unet_{}".format(key_lora)] = unet_key
|
||||
key_map["lycoris_{}".format(key_lora)] = unet_key #simpletuner lycoris format
|
||||
|
||||
diffusers_lora_prefix = ["", "unet."]
|
||||
for p in diffusers_lora_prefix:
|
||||
@ -342,10 +343,10 @@ def model_lora_keys_unet(model, key_map={}):
|
||||
return key_map
|
||||
|
||||
|
||||
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype):
|
||||
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function):
|
||||
dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, intermediate_dtype)
|
||||
lora_diff *= alpha
|
||||
weight_calc = weight + lora_diff.type(weight.dtype)
|
||||
weight_calc = weight + function(lora_diff).type(weight.dtype)
|
||||
weight_norm = (
|
||||
weight_calc.transpose(0, 1)
|
||||
.reshape(weight_calc.shape[1], -1)
|
||||
@ -452,7 +453,7 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32):
|
||||
try:
|
||||
lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype))
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
@ -498,7 +499,7 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32):
|
||||
try:
|
||||
lora_diff = torch.kron(w1, w2).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype))
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
@ -535,7 +536,7 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32):
|
||||
try:
|
||||
lora_diff = (m1 * m2).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype))
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
@ -576,7 +577,7 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32):
|
||||
lora_diff += torch.mm(b1, b2).reshape(weight.shape)
|
||||
|
||||
if dora_scale is not None:
|
||||
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype))
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
|
@ -96,7 +96,7 @@ class BaseModel(torch.nn.Module):
|
||||
|
||||
if not unet_config.get("disable_unet_model_creation", False):
|
||||
if model_config.custom_operations is None:
|
||||
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype)
|
||||
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=model_config.optimizations.get("fp8", False))
|
||||
else:
|
||||
operations = model_config.custom_operations
|
||||
self.diffusion_model = unet_model(**unet_config, device=device, operations=operations)
|
||||
|
@ -145,7 +145,7 @@ total_ram = psutil.virtual_memory().total / (1024 * 1024)
|
||||
logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
|
||||
|
||||
try:
|
||||
logging.info("pytorch version: {}".format(torch.version.__version__))
|
||||
logging.info("pytorch version: {}".format(torch_version))
|
||||
except:
|
||||
pass
|
||||
|
||||
@ -899,7 +899,7 @@ def force_upcast_attention_dtype():
|
||||
upcast = args.force_upcast_attention
|
||||
try:
|
||||
macos_version = tuple(int(n) for n in platform.mac_ver()[0].split("."))
|
||||
if (14, 5) <= macos_version < (14, 7): # black image bug on recent versions of MacOS
|
||||
if (14, 5) <= macos_version <= (15, 0, 1): # black image bug on recent versions of macOS
|
||||
upcast = True
|
||||
except:
|
||||
pass
|
||||
@ -1065,6 +1065,9 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
|
||||
return False
|
||||
|
||||
def supports_fp8_compute(device=None):
|
||||
if not is_nvidia():
|
||||
return False
|
||||
|
||||
props = torch.cuda.get_device_properties(device)
|
||||
if props.major >= 9:
|
||||
return True
|
||||
@ -1072,6 +1075,14 @@ def supports_fp8_compute(device=None):
|
||||
return False
|
||||
if props.minor < 9:
|
||||
return False
|
||||
|
||||
if int(torch_version[0]) < 2 or (int(torch_version[0]) == 2 and int(torch_version[2]) < 3):
|
||||
return False
|
||||
|
||||
if WINDOWS:
|
||||
if (int(torch_version[0]) == 2 and int(torch_version[2]) < 4):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def soft_empty_cache(force=False):
|
||||
|
@ -88,8 +88,12 @@ class LowVramPatch:
|
||||
self.key = key
|
||||
self.patches = patches
|
||||
def __call__(self, weight):
|
||||
return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=weight.dtype)
|
||||
intermediate_dtype = weight.dtype
|
||||
if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops
|
||||
intermediate_dtype = torch.float32
|
||||
return comfy.float.stochastic_rounding(comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype), weight.dtype, seed=string_to_seed(self.key))
|
||||
|
||||
return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype)
|
||||
class ModelPatcher:
|
||||
def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False):
|
||||
self.size = size
|
||||
|
@ -260,7 +260,6 @@ def fp8_linear(self, input):
|
||||
|
||||
if len(input.shape) == 3:
|
||||
inn = input.reshape(-1, input.shape[2]).to(dtype)
|
||||
non_blocking = comfy.model_management.device_supports_non_blocking(input.device)
|
||||
w, bias = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input.dtype)
|
||||
w = w.t()
|
||||
|
||||
@ -300,7 +299,11 @@ class fp8_ops(manual_cast):
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
|
||||
|
||||
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False):
|
||||
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False):
|
||||
if comfy.model_management.supports_fp8_compute(load_device):
|
||||
if (fp8_optimizations or args.fast) and not disable_fast_fp8:
|
||||
return fp8_ops
|
||||
|
||||
if compute_dtype is None or weight_dtype == compute_dtype:
|
||||
return disable_weight_init
|
||||
if args.fast and not disable_fast_fp8:
|
||||
|
@ -571,8 +571,8 @@ class Sampler:
|
||||
|
||||
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
|
||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
|
||||
"ipndm", "ipndm_v", "deis", 'sa_solver', "sa_solver_gpu", "sa_solver_pece", "sa_solver_pece_gpu"]
|
||||
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
|
||||
"ipndm", "ipndm_v", "deis", "sa_solver", "sa_solver_gpu", "sa_solver_pece", "sa_solver_pece_gpu"]
|
||||
|
||||
class KSAMPLER(Sampler):
|
||||
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
|
||||
|
96
comfy/sd.py
96
comfy/sd.py
@ -29,7 +29,6 @@ import comfy.text_encoders.long_clipl
|
||||
import comfy.model_patcher
|
||||
import comfy.lora
|
||||
import comfy.t2i_adapter.adapter
|
||||
import comfy.supported_models_base
|
||||
import comfy.taesd.taesd
|
||||
|
||||
def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
|
||||
@ -348,7 +347,7 @@ class VAE:
|
||||
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
||||
free_memory = model_management.get_free_memory(self.device)
|
||||
batch_number = int(free_memory / memory_used)
|
||||
batch_number = int(free_memory / max(1, memory_used))
|
||||
batch_number = max(1, batch_number)
|
||||
samples = torch.empty((pixel_samples.shape[0], self.latent_channels) + tuple(map(lambda a: a // self.downscale_ratio, pixel_samples.shape[2:])), device=self.output_device)
|
||||
for x in range(0, pixel_samples.shape[0], batch_number):
|
||||
@ -406,8 +405,48 @@ def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DI
|
||||
clip_data.append(comfy.utils.load_torch_file(p, safe_load=True))
|
||||
return load_text_encoder_state_dicts(clip_data, embedding_directory=embedding_directory, clip_type=clip_type, model_options=model_options)
|
||||
|
||||
|
||||
class TEModel(Enum):
|
||||
CLIP_L = 1
|
||||
CLIP_H = 2
|
||||
CLIP_G = 3
|
||||
T5_XXL = 4
|
||||
T5_XL = 5
|
||||
T5_BASE = 6
|
||||
|
||||
def detect_te_model(sd):
|
||||
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
||||
return TEModel.CLIP_G
|
||||
if "text_model.encoder.layers.22.mlp.fc1.weight" in sd:
|
||||
return TEModel.CLIP_H
|
||||
if "text_model.encoder.layers.0.mlp.fc1.weight" in sd:
|
||||
return TEModel.CLIP_L
|
||||
if "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in sd:
|
||||
weight = sd["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"]
|
||||
if weight.shape[-1] == 4096:
|
||||
return TEModel.T5_XXL
|
||||
elif weight.shape[-1] == 2048:
|
||||
return TEModel.T5_XL
|
||||
if "encoder.block.0.layer.0.SelfAttention.k.weight" in sd:
|
||||
return TEModel.T5_BASE
|
||||
return None
|
||||
|
||||
|
||||
def t5xxl_weight_dtype(clip_data):
|
||||
weight_name = "encoder.block.23.layer.1.DenseReluDense.wi_1.weight"
|
||||
|
||||
dtype_t5 = None
|
||||
for sd in clip_data:
|
||||
weight = sd.get(weight_name, None)
|
||||
if weight is not None:
|
||||
dtype_t5 = weight.dtype
|
||||
break
|
||||
return dtype_t5
|
||||
|
||||
|
||||
def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
|
||||
clip_data = state_dicts
|
||||
|
||||
class EmptyClass:
|
||||
pass
|
||||
|
||||
@ -421,53 +460,52 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
clip_target = EmptyClass()
|
||||
clip_target.params = {}
|
||||
if len(clip_data) == 1:
|
||||
if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]:
|
||||
te_model = detect_te_model(clip_data[0])
|
||||
if te_model == TEModel.CLIP_G:
|
||||
if clip_type == CLIPType.STABLE_CASCADE:
|
||||
clip_target.clip = sdxl_clip.StableCascadeClipModel
|
||||
clip_target.tokenizer = sdxl_clip.StableCascadeTokenizer
|
||||
elif clip_type == CLIPType.SD3:
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=True, t5=False)
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
else:
|
||||
clip_target.clip = sdxl_clip.SDXLRefinerClipModel
|
||||
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
||||
elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]:
|
||||
elif te_model == TEModel.CLIP_H:
|
||||
clip_target.clip = comfy.text_encoders.sd2_clip.SD2ClipModel
|
||||
clip_target.tokenizer = comfy.text_encoders.sd2_clip.SD2Tokenizer
|
||||
elif "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in clip_data[0]:
|
||||
weight = clip_data[0]["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"]
|
||||
dtype_t5 = weight.dtype
|
||||
if weight.shape[-1] == 4096:
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, dtype_t5=dtype_t5)
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
elif weight.shape[-1] == 2048:
|
||||
clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model
|
||||
clip_target.tokenizer = comfy.text_encoders.aura_t5.AuraT5Tokenizer
|
||||
elif "encoder.block.0.layer.0.SelfAttention.k.weight" in clip_data[0]:
|
||||
elif te_model == TEModel.T5_XXL:
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, dtype_t5=t5xxl_weight_dtype(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
elif te_model == TEModel.T5_XL:
|
||||
clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model
|
||||
clip_target.tokenizer = comfy.text_encoders.aura_t5.AuraT5Tokenizer
|
||||
elif te_model == TEModel.T5_BASE:
|
||||
clip_target.clip = comfy.text_encoders.sa_t5.SAT5Model
|
||||
clip_target.tokenizer = comfy.text_encoders.sa_t5.SAT5Tokenizer
|
||||
else:
|
||||
w = clip_data[0].get("text_model.embeddings.position_embedding.weight", None)
|
||||
clip_target.clip = sd1_clip.SD1ClipModel
|
||||
clip_target.tokenizer = sd1_clip.SD1Tokenizer
|
||||
if clip_type == CLIPType.SD3:
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False)
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
else:
|
||||
clip_target.clip = sd1_clip.SD1ClipModel
|
||||
clip_target.tokenizer = sd1_clip.SD1Tokenizer
|
||||
elif len(clip_data) == 2:
|
||||
if clip_type == CLIPType.SD3:
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=True, t5=False)
|
||||
te_models = [detect_te_model(clip_data[0]), detect_te_model(clip_data[1])]
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=TEModel.CLIP_L in te_models, clip_g=TEModel.CLIP_G in te_models, t5=TEModel.T5_XXL in te_models, dtype_t5=t5xxl_weight_dtype(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
elif clip_type == CLIPType.HUNYUAN_DIT:
|
||||
clip_target.clip = comfy.text_encoders.hydit.HyditModel
|
||||
clip_target.tokenizer = comfy.text_encoders.hydit.HyditTokenizer
|
||||
elif clip_type == CLIPType.FLUX:
|
||||
weight_name = "encoder.block.23.layer.1.DenseReluDense.wi_1.weight"
|
||||
weight = clip_data[0].get(weight_name, clip_data[1].get(weight_name, None))
|
||||
dtype_t5 = None
|
||||
if weight is not None:
|
||||
dtype_t5 = weight.dtype
|
||||
|
||||
clip_target.clip = comfy.text_encoders.flux.flux_clip(dtype_t5=dtype_t5)
|
||||
clip_target.clip = comfy.text_encoders.flux.flux_clip(dtype_t5=t5xxl_weight_dtype(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.flux.FluxTokenizer
|
||||
else:
|
||||
clip_target.clip = sdxl_clip.SDXLClipModel
|
||||
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
||||
elif len(clip_data) == 3:
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.SD3ClipModel
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(dtype_t5=t5xxl_weight_dtype(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
|
||||
parameters = 0
|
||||
@ -546,7 +584,7 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
|
||||
unet_weight_dtype.append(weight_dtype)
|
||||
|
||||
model_config.custom_operations = model_options.get("custom_operations", None)
|
||||
unet_dtype = model_options.get("weight_dtype", None)
|
||||
unet_dtype = model_options.get("dtype", model_options.get("weight_dtype", None))
|
||||
|
||||
if unet_dtype is None:
|
||||
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype)
|
||||
@ -560,7 +598,6 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
|
||||
|
||||
if output_model:
|
||||
inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype)
|
||||
offload_device = model_management.unet_offload_device()
|
||||
model = model_config.get_model(sd, diffusion_model_prefix, device=inital_load_device)
|
||||
model.load_model_weights(sd, diffusion_model_prefix)
|
||||
|
||||
@ -646,6 +683,9 @@ def load_diffusion_model_state_dict(sd, model_options={}): #load unet in diffuse
|
||||
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
|
||||
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
|
||||
model_config.custom_operations = model_options.get("custom_operations", model_config.custom_operations)
|
||||
if model_options.get("fp8_optimizations", False):
|
||||
model_config.optimizations["fp8"] = True
|
||||
|
||||
model = model_config.get_model(new_sd, "")
|
||||
model = model.to(offload_device)
|
||||
model.load_model_weights(new_sd, "")
|
||||
|
@ -80,7 +80,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
"pooled",
|
||||
"hidden"
|
||||
]
|
||||
def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
|
||||
def __init__(self, device="cpu", max_length=77,
|
||||
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel,
|
||||
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False, zero_out_masked=False,
|
||||
return_projected_pooled=True, return_attention_masks=False, model_options={}): # clip-vit-base-patch32
|
||||
|
@ -49,6 +49,7 @@ class BASE:
|
||||
|
||||
manual_cast_dtype = None
|
||||
custom_operations = None
|
||||
optimizations = {"fp8": False}
|
||||
|
||||
@classmethod
|
||||
def matches(s, unet_config, state_dict=None):
|
||||
@ -71,6 +72,7 @@ class BASE:
|
||||
self.unet_config = unet_config.copy()
|
||||
self.sampling_settings = self.sampling_settings.copy()
|
||||
self.latent_format = self.latent_format()
|
||||
self.optimizations = self.optimizations.copy()
|
||||
for x in self.unet_extra_config:
|
||||
self.unet_config[x] = self.unet_extra_config[x]
|
||||
|
||||
|
@ -13,7 +13,7 @@ class T5XXLModel(sd1_clip.SDClipModel):
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
|
||||
|
||||
|
||||
class FluxTokenizer:
|
||||
|
@ -8,9 +8,9 @@ import comfy.model_management
|
||||
import logging
|
||||
|
||||
class T5XXLModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=False, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json")
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, model_options=model_options)
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
@ -39,7 +39,7 @@ class SD3Tokenizer:
|
||||
return {}
|
||||
|
||||
class SD3ClipModel(torch.nn.Module):
|
||||
def __init__(self, clip_l=True, clip_g=True, t5=True, dtype_t5=None, device="cpu", dtype=None, model_options={}):
|
||||
def __init__(self, clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5_attention_mask=False, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__()
|
||||
self.dtypes = set()
|
||||
if clip_l:
|
||||
@ -57,7 +57,8 @@ class SD3ClipModel(torch.nn.Module):
|
||||
|
||||
if t5:
|
||||
dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
|
||||
self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options)
|
||||
self.t5_attention_mask = t5_attention_mask
|
||||
self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options, attention_mask=self.t5_attention_mask)
|
||||
self.dtypes.add(dtype_t5)
|
||||
else:
|
||||
self.t5xxl = None
|
||||
@ -87,6 +88,7 @@ class SD3ClipModel(torch.nn.Module):
|
||||
lg_out = None
|
||||
pooled = None
|
||||
out = None
|
||||
extra = {}
|
||||
|
||||
if len(token_weight_pairs_g) > 0 or len(token_weight_pairs_l) > 0:
|
||||
if self.clip_l is not None:
|
||||
@ -111,7 +113,11 @@ class SD3ClipModel(torch.nn.Module):
|
||||
pooled = torch.cat((l_pooled, g_pooled), dim=-1)
|
||||
|
||||
if self.t5xxl is not None:
|
||||
t5_out, t5_pooled = self.t5xxl.encode_token_weights(token_weight_pairs_t5)
|
||||
t5_output = self.t5xxl.encode_token_weights(token_weight_pairs_t5)
|
||||
t5_out, t5_pooled = t5_output[:2]
|
||||
if self.t5_attention_mask:
|
||||
extra["attention_mask"] = t5_output[2]["attention_mask"]
|
||||
|
||||
if lg_out is not None:
|
||||
out = torch.cat([lg_out, t5_out], dim=-2)
|
||||
else:
|
||||
@ -123,7 +129,7 @@ class SD3ClipModel(torch.nn.Module):
|
||||
if pooled is None:
|
||||
pooled = torch.zeros((1, 768 + 1280), device=comfy.model_management.intermediate_device())
|
||||
|
||||
return out, pooled
|
||||
return out, pooled, extra
|
||||
|
||||
def load_sd(self, sd):
|
||||
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
||||
@ -133,8 +139,8 @@ class SD3ClipModel(torch.nn.Module):
|
||||
else:
|
||||
return self.t5xxl.load_sd(sd)
|
||||
|
||||
def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None):
|
||||
def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5_attention_mask=False):
|
||||
class SD3ClipModel_(SD3ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, device=device, dtype=dtype, model_options=model_options)
|
||||
super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, t5_attention_mask=t5_attention_mask, device=device, dtype=dtype, model_options=model_options)
|
||||
return SD3ClipModel_
|
||||
|
@ -16,14 +16,15 @@ class EmptyLatentAudio:
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"seconds": ("FLOAT", {"default": 47.6, "min": 1.0, "max": 1000.0, "step": 0.1})}}
|
||||
return {"required": {"seconds": ("FLOAT", {"default": 47.6, "min": 1.0, "max": 1000.0, "step": 0.1}),
|
||||
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}),
|
||||
}}
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "generate"
|
||||
|
||||
CATEGORY = "latent/audio"
|
||||
|
||||
def generate(self, seconds):
|
||||
batch_size = 1
|
||||
def generate(self, seconds, batch_size):
|
||||
length = round((seconds * 44100 / 2048) / 2) * 2
|
||||
latent = torch.zeros([batch_size, 64, length], device=self.device)
|
||||
return ({"samples":latent, "type": "audio"}, )
|
||||
|
@ -17,7 +17,7 @@ class PatchModelAddDownscale:
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
|
||||
CATEGORY = "_for_testing"
|
||||
CATEGORY = "model_patches/unet"
|
||||
|
||||
def patch(self, model, block_number, downscale_factor, start_percent, end_percent, downscale_after_skip, downscale_method, upscale_method):
|
||||
model_sampling = model.get_model_object("model_sampling")
|
||||
|
@ -116,6 +116,7 @@ class StableCascade_SuperResolutionControlnet:
|
||||
RETURN_NAMES = ("controlnet_input", "stage_c", "stage_b")
|
||||
FUNCTION = "generate"
|
||||
|
||||
EXPERIMENTAL = True
|
||||
CATEGORY = "_for_testing/stable_cascade"
|
||||
|
||||
def generate(self, image, vae):
|
||||
|
@ -154,7 +154,7 @@ class TomePatchModel:
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
|
||||
CATEGORY = "_for_testing"
|
||||
CATEGORY = "model_patches/unet"
|
||||
|
||||
def patch(self, model, ratio):
|
||||
self.u = None
|
||||
|
@ -4,6 +4,7 @@ class TorchCompileModel:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"backend": (["inductor", "cudagraphs"],),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
@ -11,9 +12,9 @@ class TorchCompileModel:
|
||||
CATEGORY = "_for_testing"
|
||||
EXPERIMENTAL = True
|
||||
|
||||
def patch(self, model):
|
||||
def patch(self, model, backend):
|
||||
m = model.clone()
|
||||
m.add_object_patch("diffusion_model", torch.compile(model=m.get_model_object("diffusion_model")))
|
||||
m.add_object_patch("diffusion_model", torch.compile(model=m.get_model_object("diffusion_model"), backend=backend))
|
||||
return (m, )
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
|
@ -107,7 +107,7 @@ class VideoTriangleCFGGuidance:
|
||||
return (m, )
|
||||
|
||||
class ImageOnlyCheckpointSave(comfy_extras.nodes_model_merging.CheckpointSave):
|
||||
CATEGORY = "_for_testing"
|
||||
CATEGORY = "advanced/model_merging"
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
|
@ -37,6 +37,7 @@ class SaveImageWebsocket:
|
||||
|
||||
return {}
|
||||
|
||||
@classmethod
|
||||
def IS_CHANGED(s, images):
|
||||
return time.time()
|
||||
|
||||
|
@ -234,8 +234,12 @@ def recursive_search(directory: str, excluded_dir_names: list[str] | None=None)
|
||||
for dirpath, subdirs, filenames in os.walk(directory, followlinks=True, topdown=True):
|
||||
subdirs[:] = [d for d in subdirs if d not in excluded_dir_names]
|
||||
for file_name in filenames:
|
||||
relative_path = os.path.relpath(os.path.join(dirpath, file_name), directory)
|
||||
result.append(relative_path)
|
||||
try:
|
||||
relative_path = os.path.relpath(os.path.join(dirpath, file_name), directory)
|
||||
result.append(relative_path)
|
||||
except:
|
||||
logging.warning(f"Warning: Unable to access {file_name}. Skipping this file.")
|
||||
continue
|
||||
|
||||
for d in subdirs:
|
||||
path: str = os.path.join(dirpath, d)
|
||||
|
@ -36,12 +36,20 @@ class TAESDPreviewerImpl(LatentPreviewer):
|
||||
|
||||
|
||||
class Latent2RGBPreviewer(LatentPreviewer):
|
||||
def __init__(self, latent_rgb_factors):
|
||||
self.latent_rgb_factors = torch.tensor(latent_rgb_factors, device="cpu")
|
||||
def __init__(self, latent_rgb_factors, latent_rgb_factors_bias=None):
|
||||
self.latent_rgb_factors = torch.tensor(latent_rgb_factors, device="cpu").transpose(0, 1)
|
||||
self.latent_rgb_factors_bias = None
|
||||
if latent_rgb_factors_bias is not None:
|
||||
self.latent_rgb_factors_bias = torch.tensor(latent_rgb_factors_bias, device="cpu")
|
||||
|
||||
def decode_latent_to_preview(self, x0):
|
||||
self.latent_rgb_factors = self.latent_rgb_factors.to(dtype=x0.dtype, device=x0.device)
|
||||
latent_image = x0[0].permute(1, 2, 0) @ self.latent_rgb_factors
|
||||
if self.latent_rgb_factors_bias is not None:
|
||||
self.latent_rgb_factors_bias = self.latent_rgb_factors_bias.to(dtype=x0.dtype, device=x0.device)
|
||||
|
||||
latent_image = torch.nn.functional.linear(x0[0].permute(1, 2, 0), self.latent_rgb_factors, bias=self.latent_rgb_factors_bias)
|
||||
# latent_image = x0[0].permute(1, 2, 0) @ self.latent_rgb_factors
|
||||
|
||||
return preview_to_image(latent_image)
|
||||
|
||||
|
||||
@ -71,7 +79,7 @@ def get_previewer(device, latent_format):
|
||||
|
||||
if previewer is None:
|
||||
if latent_format.latent_rgb_factors is not None:
|
||||
previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors)
|
||||
previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors, latent_format.latent_rgb_factors_bias)
|
||||
return previewer
|
||||
|
||||
def prepare_callback(model, steps, x0_output_dict=None):
|
||||
|
9
main.py
9
main.py
@ -9,7 +9,7 @@ from comfy.cli_args import args
|
||||
from app.logger import setup_logger
|
||||
|
||||
|
||||
setup_logger(verbose=args.verbose)
|
||||
setup_logger(log_level=args.verbose)
|
||||
|
||||
|
||||
def execute_prestartup_script():
|
||||
@ -160,7 +160,10 @@ def prompt_worker(q, server):
|
||||
need_gc = False
|
||||
|
||||
async def run(server, address='', port=8188, verbose=True, call_on_start=None):
|
||||
await asyncio.gather(server.start(address, port, verbose, call_on_start), server.publish_loop())
|
||||
addresses = []
|
||||
for addr in address.split(","):
|
||||
addresses.append((addr, port))
|
||||
await asyncio.gather(server.start_multi_address(addresses, call_on_start), server.publish_loop())
|
||||
|
||||
|
||||
def hijack_progress(server):
|
||||
@ -248,6 +251,8 @@ if __name__ == "__main__":
|
||||
import webbrowser
|
||||
if os.name == 'nt' and address == '0.0.0.0':
|
||||
address = '127.0.0.1'
|
||||
if ':' in address:
|
||||
address = "[{}]".format(address)
|
||||
webbrowser.open(f"{scheme}://{address}:{port}")
|
||||
call_on_start = startup_server
|
||||
|
||||
|
@ -1,2 +1,2 @@
|
||||
# model_manager/__init__.py
|
||||
from .download_models import download_model, DownloadModelStatus, DownloadStatusType, create_model_path, check_file_exists, track_download_progress, validate_model_subdirectory, validate_filename
|
||||
from .download_models import download_model, DownloadModelStatus, DownloadStatusType, create_model_path, check_file_exists, track_download_progress, validate_filename
|
||||
|
@ -1,9 +1,10 @@
|
||||
#NOTE: This was an experiment and WILL BE REMOVED
|
||||
from __future__ import annotations
|
||||
import aiohttp
|
||||
import os
|
||||
import traceback
|
||||
import logging
|
||||
from folder_paths import models_dir
|
||||
from folder_paths import folder_names_and_paths, get_folder_paths
|
||||
import re
|
||||
from typing import Callable, Any, Optional, Awaitable, Dict
|
||||
from enum import Enum
|
||||
@ -17,6 +18,7 @@ class DownloadStatusType(Enum):
|
||||
COMPLETED = "completed"
|
||||
ERROR = "error"
|
||||
|
||||
|
||||
@dataclass
|
||||
class DownloadModelStatus():
|
||||
status: str
|
||||
@ -29,7 +31,7 @@ class DownloadModelStatus():
|
||||
self.progress_percentage = progress_percentage
|
||||
self.message = message
|
||||
self.already_existed = already_existed
|
||||
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
return {
|
||||
"status": self.status,
|
||||
@ -38,102 +40,112 @@ class DownloadModelStatus():
|
||||
"already_existed": self.already_existed
|
||||
}
|
||||
|
||||
|
||||
async def download_model(model_download_request: Callable[[str], Awaitable[aiohttp.ClientResponse]],
|
||||
model_name: str,
|
||||
model_url: str,
|
||||
model_sub_directory: str,
|
||||
model_name: str,
|
||||
model_url: str,
|
||||
model_directory: str,
|
||||
folder_path: str,
|
||||
progress_callback: Callable[[str, DownloadModelStatus], Awaitable[Any]],
|
||||
progress_interval: float = 1.0) -> DownloadModelStatus:
|
||||
"""
|
||||
Download a model file from a given URL into the models directory.
|
||||
|
||||
Args:
|
||||
model_download_request (Callable[[str], Awaitable[aiohttp.ClientResponse]]):
|
||||
model_download_request (Callable[[str], Awaitable[aiohttp.ClientResponse]]):
|
||||
A function that makes an HTTP request. This makes it easier to mock in unit tests.
|
||||
model_name (str):
|
||||
model_name (str):
|
||||
The name of the model file to be downloaded. This will be the filename on disk.
|
||||
model_url (str):
|
||||
model_url (str):
|
||||
The URL from which to download the model.
|
||||
model_sub_directory (str):
|
||||
The subdirectory within the main models directory where the model
|
||||
model_directory (str):
|
||||
The subdirectory within the main models directory where the model
|
||||
should be saved (e.g., 'checkpoints', 'loras', etc.).
|
||||
progress_callback (Callable[[str, DownloadModelStatus], Awaitable[Any]]):
|
||||
progress_callback (Callable[[str, DownloadModelStatus], Awaitable[Any]]):
|
||||
An asynchronous function to call with progress updates.
|
||||
folder_path (str);
|
||||
Path to which model folder should be used as the root.
|
||||
|
||||
Returns:
|
||||
DownloadModelStatus: The result of the download operation.
|
||||
"""
|
||||
if not validate_model_subdirectory(model_sub_directory):
|
||||
return DownloadModelStatus(
|
||||
DownloadStatusType.ERROR,
|
||||
0,
|
||||
"Invalid model subdirectory",
|
||||
False
|
||||
)
|
||||
|
||||
if not validate_filename(model_name):
|
||||
return DownloadModelStatus(
|
||||
DownloadStatusType.ERROR,
|
||||
DownloadStatusType.ERROR,
|
||||
0,
|
||||
"Invalid model name",
|
||||
"Invalid model name",
|
||||
False
|
||||
)
|
||||
|
||||
file_path, relative_path = create_model_path(model_name, model_sub_directory, models_dir)
|
||||
existing_file = await check_file_exists(file_path, model_name, progress_callback, relative_path)
|
||||
if not model_directory in folder_names_and_paths:
|
||||
return DownloadModelStatus(
|
||||
DownloadStatusType.ERROR,
|
||||
0,
|
||||
"Invalid or unrecognized model directory. model_directory must be a known model type (eg 'checkpoints'). If you are seeing this error for a custom model type, ensure the relevant custom nodes are installed and working.",
|
||||
False
|
||||
)
|
||||
|
||||
if not folder_path in get_folder_paths(model_directory):
|
||||
return DownloadModelStatus(
|
||||
DownloadStatusType.ERROR,
|
||||
0,
|
||||
f"Invalid folder path '{folder_path}', does not match the list of known directories ({get_folder_paths(model_directory)}). If you're seeing this in the downloader UI, you may need to refresh the page.",
|
||||
False
|
||||
)
|
||||
|
||||
file_path = create_model_path(model_name, folder_path)
|
||||
existing_file = await check_file_exists(file_path, model_name, progress_callback)
|
||||
if existing_file:
|
||||
return existing_file
|
||||
|
||||
try:
|
||||
logging.info(f"Downloading {model_name} from {model_url}")
|
||||
status = DownloadModelStatus(DownloadStatusType.PENDING, 0, f"Starting download of {model_name}", False)
|
||||
await progress_callback(relative_path, status)
|
||||
await progress_callback(model_name, status)
|
||||
|
||||
response = await model_download_request(model_url)
|
||||
if response.status != 200:
|
||||
error_message = f"Failed to download {model_name}. Status code: {response.status}"
|
||||
logging.error(error_message)
|
||||
status = DownloadModelStatus(DownloadStatusType.ERROR, 0, error_message, False)
|
||||
await progress_callback(relative_path, status)
|
||||
await progress_callback(model_name, status)
|
||||
return DownloadModelStatus(DownloadStatusType.ERROR, 0, error_message, False)
|
||||
|
||||
return await track_download_progress(response, file_path, model_name, progress_callback, relative_path, progress_interval)
|
||||
return await track_download_progress(response, file_path, model_name, progress_callback, progress_interval)
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error in downloading model: {e}")
|
||||
return await handle_download_error(e, model_name, progress_callback, relative_path)
|
||||
|
||||
return await handle_download_error(e, model_name, progress_callback)
|
||||
|
||||
def create_model_path(model_name: str, model_directory: str, models_base_dir: str) -> tuple[str, str]:
|
||||
full_model_dir = os.path.join(models_base_dir, model_directory)
|
||||
os.makedirs(full_model_dir, exist_ok=True)
|
||||
file_path = os.path.join(full_model_dir, model_name)
|
||||
|
||||
def create_model_path(model_name: str, folder_path: str) -> tuple[str, str]:
|
||||
os.makedirs(folder_path, exist_ok=True)
|
||||
file_path = os.path.join(folder_path, model_name)
|
||||
|
||||
# Ensure the resulting path is still within the base directory
|
||||
abs_file_path = os.path.abspath(file_path)
|
||||
abs_base_dir = os.path.abspath(str(models_base_dir))
|
||||
abs_base_dir = os.path.abspath(folder_path)
|
||||
if os.path.commonprefix([abs_file_path, abs_base_dir]) != abs_base_dir:
|
||||
raise Exception(f"Invalid model directory: {model_directory}/{model_name}")
|
||||
raise Exception(f"Invalid model directory: {folder_path}/{model_name}")
|
||||
|
||||
return file_path
|
||||
|
||||
|
||||
relative_path = '/'.join([model_directory, model_name])
|
||||
return file_path, relative_path
|
||||
|
||||
async def check_file_exists(file_path: str,
|
||||
model_name: str,
|
||||
progress_callback: Callable[[str, DownloadModelStatus], Awaitable[Any]],
|
||||
relative_path: str) -> Optional[DownloadModelStatus]:
|
||||
async def check_file_exists(file_path: str,
|
||||
model_name: str,
|
||||
progress_callback: Callable[[str, DownloadModelStatus], Awaitable[Any]]
|
||||
) -> Optional[DownloadModelStatus]:
|
||||
if os.path.exists(file_path):
|
||||
status = DownloadModelStatus(DownloadStatusType.COMPLETED, 100, f"{model_name} already exists", True)
|
||||
await progress_callback(relative_path, status)
|
||||
await progress_callback(model_name, status)
|
||||
return status
|
||||
return None
|
||||
|
||||
|
||||
async def track_download_progress(response: aiohttp.ClientResponse,
|
||||
file_path: str,
|
||||
model_name: str,
|
||||
progress_callback: Callable[[str, DownloadModelStatus], Awaitable[Any]],
|
||||
relative_path: str,
|
||||
async def track_download_progress(response: aiohttp.ClientResponse,
|
||||
file_path: str,
|
||||
model_name: str,
|
||||
progress_callback: Callable[[str, DownloadModelStatus], Awaitable[Any]],
|
||||
interval: float = 1.0) -> DownloadModelStatus:
|
||||
try:
|
||||
total_size = int(response.headers.get('Content-Length', 0))
|
||||
@ -144,10 +156,11 @@ async def track_download_progress(response: aiohttp.ClientResponse,
|
||||
nonlocal last_update_time
|
||||
progress = (downloaded / total_size) * 100 if total_size > 0 else 0
|
||||
status = DownloadModelStatus(DownloadStatusType.IN_PROGRESS, progress, f"Downloading {model_name}", False)
|
||||
await progress_callback(relative_path, status)
|
||||
await progress_callback(model_name, status)
|
||||
last_update_time = time.time()
|
||||
|
||||
with open(file_path, 'wb') as f:
|
||||
temp_file_path = file_path + '.tmp'
|
||||
with open(temp_file_path, 'wb') as f:
|
||||
chunk_iterator = response.content.iter_chunked(8192)
|
||||
while True:
|
||||
try:
|
||||
@ -156,58 +169,39 @@ async def track_download_progress(response: aiohttp.ClientResponse,
|
||||
break
|
||||
f.write(chunk)
|
||||
downloaded += len(chunk)
|
||||
|
||||
|
||||
if time.time() - last_update_time >= interval:
|
||||
await update_progress()
|
||||
|
||||
os.rename(temp_file_path, file_path)
|
||||
|
||||
await update_progress()
|
||||
|
||||
|
||||
logging.info(f"Successfully downloaded {model_name}. Total downloaded: {downloaded}")
|
||||
status = DownloadModelStatus(DownloadStatusType.COMPLETED, 100, f"Successfully downloaded {model_name}", False)
|
||||
await progress_callback(relative_path, status)
|
||||
await progress_callback(model_name, status)
|
||||
|
||||
return status
|
||||
except Exception as e:
|
||||
logging.error(f"Error in track_download_progress: {e}")
|
||||
logging.error(traceback.format_exc())
|
||||
return await handle_download_error(e, model_name, progress_callback, relative_path)
|
||||
return await handle_download_error(e, model_name, progress_callback)
|
||||
|
||||
async def handle_download_error(e: Exception,
|
||||
model_name: str,
|
||||
progress_callback: Callable[[str, DownloadModelStatus], Any],
|
||||
relative_path: str) -> DownloadModelStatus:
|
||||
|
||||
async def handle_download_error(e: Exception,
|
||||
model_name: str,
|
||||
progress_callback: Callable[[str, DownloadModelStatus], Any]
|
||||
) -> DownloadModelStatus:
|
||||
error_message = f"Error downloading {model_name}: {str(e)}"
|
||||
status = DownloadModelStatus(DownloadStatusType.ERROR, 0, error_message, False)
|
||||
await progress_callback(relative_path, status)
|
||||
await progress_callback(model_name, status)
|
||||
return status
|
||||
|
||||
def validate_model_subdirectory(model_subdirectory: str) -> bool:
|
||||
"""
|
||||
Validate that the model subdirectory is safe to install into.
|
||||
Must not contain relative paths, nested paths or special characters
|
||||
other than underscores and hyphens.
|
||||
|
||||
Args:
|
||||
model_subdirectory (str): The subdirectory for the specific model type.
|
||||
|
||||
Returns:
|
||||
bool: True if the subdirectory is safe, False otherwise.
|
||||
"""
|
||||
if len(model_subdirectory) > 50:
|
||||
return False
|
||||
|
||||
if '..' in model_subdirectory or '/' in model_subdirectory:
|
||||
return False
|
||||
|
||||
if not re.match(r'^[a-zA-Z0-9_-]+$', model_subdirectory):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def validate_filename(filename: str)-> bool:
|
||||
"""
|
||||
Validate a filename to ensure it's safe and doesn't contain any path traversal attempts.
|
||||
|
||||
|
||||
Args:
|
||||
filename (str): The filename to validate
|
||||
|
||||
|
5
nodes.py
5
nodes.py
@ -861,7 +861,7 @@ class UNETLoader:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "unet_name": (folder_paths.get_filename_list("diffusion_models"), ),
|
||||
"weight_dtype": (["default", "fp8_e4m3fn", "fp8_e5m2"],)
|
||||
"weight_dtype": (["default", "fp8_e4m3fn", "fp8_e4m3fn_fast", "fp8_e5m2"],)
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "load_unet"
|
||||
@ -872,6 +872,9 @@ class UNETLoader:
|
||||
model_options = {}
|
||||
if weight_dtype == "fp8_e4m3fn":
|
||||
model_options["dtype"] = torch.float8_e4m3fn
|
||||
elif weight_dtype == "fp8_e4m3fn_fast":
|
||||
model_options["dtype"] = torch.float8_e4m3fn
|
||||
model_options["fp8_optimizations"] = True
|
||||
elif weight_dtype == "fp8_e5m2":
|
||||
model_options["dtype"] = torch.float8_e5m2
|
||||
|
||||
|
34
server.py
34
server.py
@ -679,6 +679,7 @@ class PromptServer():
|
||||
|
||||
# Internal route. Should not be depended upon and is subject to change at any time.
|
||||
# TODO(robinhuang): Move to internal route table class once we refactor PromptServer to pass around Websocket.
|
||||
# NOTE: This was an experiment and WILL BE REMOVED
|
||||
@routes.post("/internal/models/download")
|
||||
async def download_handler(request):
|
||||
async def report_progress(filename: str, status: DownloadModelStatus):
|
||||
@ -689,10 +690,11 @@ class PromptServer():
|
||||
data = await request.json()
|
||||
url = data.get('url')
|
||||
model_directory = data.get('model_directory')
|
||||
folder_path = data.get('folder_path')
|
||||
model_filename = data.get('model_filename')
|
||||
progress_interval = data.get('progress_interval', 1.0) # In seconds, how often to report download progress.
|
||||
|
||||
if not url or not model_directory or not model_filename:
|
||||
if not url or not model_directory or not model_filename or not folder_path:
|
||||
return web.json_response({"status": "error", "message": "Missing URL or folder path or filename"}, status=400)
|
||||
|
||||
session = self.client_session
|
||||
@ -700,7 +702,7 @@ class PromptServer():
|
||||
logging.error("Client session is not initialized")
|
||||
return web.Response(status=500)
|
||||
|
||||
task = asyncio.create_task(download_model(lambda url: session.get(url), model_filename, url, model_directory, report_progress, progress_interval))
|
||||
task = asyncio.create_task(download_model(lambda url: session.get(url), model_filename, url, model_directory, folder_path, report_progress, progress_interval))
|
||||
await task
|
||||
|
||||
return web.json_response(task.result().to_dict())
|
||||
@ -817,6 +819,9 @@ class PromptServer():
|
||||
await self.send(*msg)
|
||||
|
||||
async def start(self, address, port, verbose=True, call_on_start=None):
|
||||
await self.start_multi_address([(address, port)], call_on_start=call_on_start)
|
||||
|
||||
async def start_multi_address(self, addresses, call_on_start=None):
|
||||
runner = web.AppRunner(self.app, access_log=None)
|
||||
await runner.setup()
|
||||
ssl_ctx = None
|
||||
@ -827,17 +832,26 @@ class PromptServer():
|
||||
keyfile=args.tls_keyfile)
|
||||
scheme = "https"
|
||||
|
||||
site = web.TCPSite(runner, address, port, ssl_context=ssl_ctx)
|
||||
await site.start()
|
||||
logging.info("Starting server\n")
|
||||
for addr in addresses:
|
||||
address = addr[0]
|
||||
port = addr[1]
|
||||
site = web.TCPSite(runner, address, port, ssl_context=ssl_ctx)
|
||||
await site.start()
|
||||
|
||||
self.address = address
|
||||
self.port = port
|
||||
if not hasattr(self, 'address'):
|
||||
self.address = address #TODO: remove this
|
||||
self.port = port
|
||||
|
||||
if ':' in address:
|
||||
address_print = "[{}]".format(address)
|
||||
else:
|
||||
address_print = address
|
||||
|
||||
logging.info("To see the GUI go to: {}://{}:{}".format(scheme, address_print, port))
|
||||
|
||||
if verbose:
|
||||
logging.info("Starting server\n")
|
||||
logging.info("To see the GUI go to: {}://{}:{}".format(scheme, address, port))
|
||||
if call_on_start is not None:
|
||||
call_on_start(scheme, address, port)
|
||||
call_on_start(scheme, self.address, self.port)
|
||||
|
||||
def add_on_prompt_handler(self, handler):
|
||||
self.on_prompt_handlers.append(handler)
|
||||
|
@ -1,10 +1,17 @@
|
||||
import pytest
|
||||
import tempfile
|
||||
import aiohttp
|
||||
from aiohttp import ClientResponse
|
||||
import itertools
|
||||
import os
|
||||
import os
|
||||
from unittest.mock import AsyncMock, patch, MagicMock
|
||||
from model_filemanager import download_model, validate_model_subdirectory, track_download_progress, create_model_path, check_file_exists, DownloadStatusType, DownloadModelStatus, validate_filename
|
||||
from model_filemanager import download_model, track_download_progress, create_model_path, check_file_exists, DownloadStatusType, DownloadModelStatus, validate_filename
|
||||
import folder_paths
|
||||
|
||||
@pytest.fixture
|
||||
def temp_dir():
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
yield tmpdirname
|
||||
|
||||
class AsyncIteratorMock:
|
||||
"""
|
||||
@ -42,7 +49,7 @@ class ContentMock:
|
||||
return AsyncIteratorMock(self.chunks)
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_download_model_success():
|
||||
async def test_download_model_success(temp_dir):
|
||||
mock_response = AsyncMock(spec=aiohttp.ClientResponse)
|
||||
mock_response.status = 200
|
||||
mock_response.headers = {'Content-Length': '1000'}
|
||||
@ -53,15 +60,13 @@ async def test_download_model_success():
|
||||
mock_make_request = AsyncMock(return_value=mock_response)
|
||||
mock_progress_callback = AsyncMock()
|
||||
|
||||
# Mock file operations
|
||||
mock_open = MagicMock()
|
||||
mock_file = MagicMock()
|
||||
mock_open.return_value.__enter__.return_value = mock_file
|
||||
time_values = itertools.count(0, 0.1)
|
||||
|
||||
with patch('model_filemanager.create_model_path', return_value=('models/checkpoints/model.sft', 'checkpoints/model.sft')), \
|
||||
fake_paths = {'checkpoints': ([temp_dir], folder_paths.supported_pt_extensions)}
|
||||
|
||||
with patch('model_filemanager.create_model_path', return_value=('models/checkpoints/model.sft', 'model.sft')), \
|
||||
patch('model_filemanager.check_file_exists', return_value=None), \
|
||||
patch('builtins.open', mock_open), \
|
||||
patch('folder_paths.folder_names_and_paths', fake_paths), \
|
||||
patch('time.time', side_effect=time_values): # Simulate time passing
|
||||
|
||||
result = await download_model(
|
||||
@ -69,6 +74,7 @@ async def test_download_model_success():
|
||||
'model.sft',
|
||||
'http://example.com/model.sft',
|
||||
'checkpoints',
|
||||
temp_dir,
|
||||
mock_progress_callback
|
||||
)
|
||||
|
||||
@ -83,44 +89,48 @@ async def test_download_model_success():
|
||||
|
||||
# Check initial call
|
||||
mock_progress_callback.assert_any_call(
|
||||
'checkpoints/model.sft',
|
||||
'model.sft',
|
||||
DownloadModelStatus(DownloadStatusType.PENDING, 0, "Starting download of model.sft", False)
|
||||
)
|
||||
|
||||
# Check final call
|
||||
mock_progress_callback.assert_any_call(
|
||||
'checkpoints/model.sft',
|
||||
'model.sft',
|
||||
DownloadModelStatus(DownloadStatusType.COMPLETED, 100, "Successfully downloaded model.sft", False)
|
||||
)
|
||||
|
||||
# Verify file writing
|
||||
mock_file.write.assert_any_call(b'a' * 500)
|
||||
mock_file.write.assert_any_call(b'b' * 300)
|
||||
mock_file.write.assert_any_call(b'c' * 200)
|
||||
mock_file_path = os.path.join(temp_dir, 'model.sft')
|
||||
assert os.path.exists(mock_file_path)
|
||||
with open(mock_file_path, 'rb') as mock_file:
|
||||
assert mock_file.read() == b''.join(chunks)
|
||||
os.remove(mock_file_path)
|
||||
|
||||
# Verify request was made
|
||||
mock_make_request.assert_called_once_with('http://example.com/model.sft')
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_download_model_url_request_failure():
|
||||
async def test_download_model_url_request_failure(temp_dir):
|
||||
# Mock dependencies
|
||||
mock_response = AsyncMock(spec=ClientResponse)
|
||||
mock_response.status = 404 # Simulate a "Not Found" error
|
||||
mock_get = AsyncMock(return_value=mock_response)
|
||||
mock_progress_callback = AsyncMock()
|
||||
|
||||
fake_paths = {'checkpoints': ([temp_dir], folder_paths.supported_pt_extensions)}
|
||||
|
||||
# Mock the create_model_path function
|
||||
with patch('model_filemanager.create_model_path', return_value=('/mock/path/model.safetensors', 'mock/path/model.safetensors')):
|
||||
# Mock the check_file_exists function to return None (file doesn't exist)
|
||||
with patch('model_filemanager.check_file_exists', return_value=None):
|
||||
# Call the function
|
||||
result = await download_model(
|
||||
mock_get,
|
||||
'model.safetensors',
|
||||
'http://example.com/model.safetensors',
|
||||
'mock_directory',
|
||||
mock_progress_callback
|
||||
)
|
||||
with patch('model_filemanager.create_model_path', return_value='/mock/path/model.safetensors'), \
|
||||
patch('model_filemanager.check_file_exists', return_value=None), \
|
||||
patch('folder_paths.folder_names_and_paths', fake_paths):
|
||||
# Call the function
|
||||
result = await download_model(
|
||||
mock_get,
|
||||
'model.safetensors',
|
||||
'http://example.com/model.safetensors',
|
||||
'checkpoints',
|
||||
temp_dir,
|
||||
mock_progress_callback
|
||||
)
|
||||
|
||||
# Assert the expected behavior
|
||||
assert isinstance(result, DownloadModelStatus)
|
||||
@ -130,7 +140,7 @@ async def test_download_model_url_request_failure():
|
||||
|
||||
# Check that progress_callback was called with the correct arguments
|
||||
mock_progress_callback.assert_any_call(
|
||||
'mock_directory/model.safetensors',
|
||||
'model.safetensors',
|
||||
DownloadModelStatus(
|
||||
status=DownloadStatusType.PENDING,
|
||||
progress_percentage=0,
|
||||
@ -139,7 +149,7 @@ async def test_download_model_url_request_failure():
|
||||
)
|
||||
)
|
||||
mock_progress_callback.assert_called_with(
|
||||
'mock_directory/model.safetensors',
|
||||
'model.safetensors',
|
||||
DownloadModelStatus(
|
||||
status=DownloadStatusType.ERROR,
|
||||
progress_percentage=0,
|
||||
@ -153,98 +163,125 @@ async def test_download_model_url_request_failure():
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_download_model_invalid_model_subdirectory():
|
||||
|
||||
mock_make_request = AsyncMock()
|
||||
mock_progress_callback = AsyncMock()
|
||||
|
||||
|
||||
result = await download_model(
|
||||
mock_make_request,
|
||||
'model.sft',
|
||||
'http://example.com/model.sft',
|
||||
'../bad_path',
|
||||
'../bad_path',
|
||||
mock_progress_callback
|
||||
)
|
||||
|
||||
# Assert the result
|
||||
assert isinstance(result, DownloadModelStatus)
|
||||
assert result.message == 'Invalid model subdirectory'
|
||||
assert result.message.startswith('Invalid or unrecognized model directory')
|
||||
assert result.status == 'error'
|
||||
assert result.already_existed is False
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_download_model_invalid_folder_path():
|
||||
mock_make_request = AsyncMock()
|
||||
mock_progress_callback = AsyncMock()
|
||||
|
||||
result = await download_model(
|
||||
mock_make_request,
|
||||
'model.sft',
|
||||
'http://example.com/model.sft',
|
||||
'checkpoints',
|
||||
'invalid_path',
|
||||
mock_progress_callback
|
||||
)
|
||||
|
||||
# Assert the result
|
||||
assert isinstance(result, DownloadModelStatus)
|
||||
assert result.message.startswith("Invalid folder path")
|
||||
assert result.status == 'error'
|
||||
assert result.already_existed is False
|
||||
|
||||
# For create_model_path function
|
||||
def test_create_model_path(tmp_path, monkeypatch):
|
||||
mock_models_dir = tmp_path / "models"
|
||||
monkeypatch.setattr('folder_paths.models_dir', str(mock_models_dir))
|
||||
|
||||
model_name = "test_model.sft"
|
||||
model_directory = "test_dir"
|
||||
|
||||
file_path, relative_path = create_model_path(model_name, model_directory, mock_models_dir)
|
||||
|
||||
assert file_path == str(mock_models_dir / model_directory / model_name)
|
||||
assert relative_path == f"{model_directory}/{model_name}"
|
||||
model_name = "model.safetensors"
|
||||
folder_path = os.path.join(tmp_path, "mock_dir")
|
||||
|
||||
file_path = create_model_path(model_name, folder_path)
|
||||
|
||||
assert file_path == os.path.join(folder_path, "model.safetensors")
|
||||
assert os.path.exists(os.path.dirname(file_path))
|
||||
|
||||
with pytest.raises(Exception, match="Invalid model directory"):
|
||||
create_model_path("../path_traversal.safetensors", folder_path)
|
||||
|
||||
with pytest.raises(Exception, match="Invalid model directory"):
|
||||
create_model_path("/etc/some_root_path", folder_path)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_check_file_exists_when_file_exists(tmp_path):
|
||||
file_path = tmp_path / "existing_model.sft"
|
||||
file_path.touch() # Create an empty file
|
||||
|
||||
|
||||
mock_callback = AsyncMock()
|
||||
|
||||
result = await check_file_exists(str(file_path), "existing_model.sft", mock_callback, "test/existing_model.sft")
|
||||
|
||||
|
||||
result = await check_file_exists(str(file_path), "existing_model.sft", mock_callback)
|
||||
|
||||
assert result is not None
|
||||
assert result.status == "completed"
|
||||
assert result.message == "existing_model.sft already exists"
|
||||
assert result.already_existed is True
|
||||
|
||||
|
||||
mock_callback.assert_called_once_with(
|
||||
"test/existing_model.sft",
|
||||
"existing_model.sft",
|
||||
DownloadModelStatus(DownloadStatusType.COMPLETED, 100, "existing_model.sft already exists", already_existed=True)
|
||||
)
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_check_file_exists_when_file_does_not_exist(tmp_path):
|
||||
file_path = tmp_path / "non_existing_model.sft"
|
||||
|
||||
|
||||
mock_callback = AsyncMock()
|
||||
|
||||
result = await check_file_exists(str(file_path), "non_existing_model.sft", mock_callback, "test/non_existing_model.sft")
|
||||
|
||||
|
||||
result = await check_file_exists(str(file_path), "non_existing_model.sft", mock_callback)
|
||||
|
||||
assert result is None
|
||||
mock_callback.assert_not_called()
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_track_download_progress_no_content_length():
|
||||
async def test_track_download_progress_no_content_length(temp_dir):
|
||||
mock_response = AsyncMock(spec=aiohttp.ClientResponse)
|
||||
mock_response.headers = {} # No Content-Length header
|
||||
mock_response.content.iter_chunked.return_value = AsyncIteratorMock([b'a' * 500, b'b' * 500])
|
||||
chunks = [b'a' * 500, b'b' * 500]
|
||||
mock_response.content.iter_chunked.return_value = AsyncIteratorMock(chunks)
|
||||
|
||||
mock_callback = AsyncMock()
|
||||
mock_open = MagicMock(return_value=MagicMock())
|
||||
|
||||
with patch('builtins.open', mock_open):
|
||||
result = await track_download_progress(
|
||||
mock_response, '/mock/path/model.sft', 'model.sft',
|
||||
mock_callback, 'models/model.sft', interval=0.1
|
||||
)
|
||||
full_path = os.path.join(temp_dir, 'model.sft')
|
||||
|
||||
result = await track_download_progress(
|
||||
mock_response, full_path, 'model.sft',
|
||||
mock_callback, interval=0.1
|
||||
)
|
||||
|
||||
assert result.status == "completed"
|
||||
|
||||
assert os.path.exists(full_path)
|
||||
with open(full_path, 'rb') as f:
|
||||
assert f.read() == b''.join(chunks)
|
||||
os.remove(full_path)
|
||||
|
||||
# Check that progress was reported even without knowing the total size
|
||||
mock_callback.assert_any_call(
|
||||
'models/model.sft',
|
||||
'model.sft',
|
||||
DownloadModelStatus(DownloadStatusType.IN_PROGRESS, 0, "Downloading model.sft", already_existed=False)
|
||||
)
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_track_download_progress_interval():
|
||||
async def test_track_download_progress_interval(temp_dir):
|
||||
mock_response = AsyncMock(spec=aiohttp.ClientResponse)
|
||||
mock_response.headers = {'Content-Length': '1000'}
|
||||
mock_response.content.iter_chunked.return_value = AsyncIteratorMock([b'a' * 100] * 10)
|
||||
chunks = [b'a' * 100] * 10
|
||||
mock_response.content.iter_chunked.return_value = AsyncIteratorMock(chunks)
|
||||
|
||||
mock_callback = AsyncMock()
|
||||
mock_open = MagicMock(return_value=MagicMock())
|
||||
@ -253,18 +290,18 @@ async def test_track_download_progress_interval():
|
||||
mock_time = MagicMock()
|
||||
mock_time.side_effect = [i * 0.5 for i in range(30)] # This should be enough for 10 chunks
|
||||
|
||||
with patch('builtins.open', mock_open), \
|
||||
patch('time.time', mock_time):
|
||||
await track_download_progress(
|
||||
mock_response, '/mock/path/model.sft', 'model.sft',
|
||||
mock_callback, 'models/model.sft', interval=1.0
|
||||
)
|
||||
full_path = os.path.join(temp_dir, 'model.sft')
|
||||
|
||||
# Print out the actual call count and the arguments of each call for debugging
|
||||
print(f"mock_callback was called {mock_callback.call_count} times")
|
||||
for i, call in enumerate(mock_callback.call_args_list):
|
||||
args, kwargs = call
|
||||
print(f"Call {i + 1}: {args[1].status}, Progress: {args[1].progress_percentage:.2f}%")
|
||||
with patch('time.time', mock_time):
|
||||
await track_download_progress(
|
||||
mock_response, full_path, 'model.sft',
|
||||
mock_callback, interval=1.0
|
||||
)
|
||||
|
||||
assert os.path.exists(full_path)
|
||||
with open(full_path, 'rb') as f:
|
||||
assert f.read() == b''.join(chunks)
|
||||
os.remove(full_path)
|
||||
|
||||
# Assert that progress was updated at least 3 times (start, at least one interval, and end)
|
||||
assert mock_callback.call_count >= 3, f"Expected at least 3 calls, but got {mock_callback.call_count}"
|
||||
@ -279,27 +316,6 @@ async def test_track_download_progress_interval():
|
||||
assert last_call[0][1].status == "completed"
|
||||
assert last_call[0][1].progress_percentage == 100
|
||||
|
||||
def test_valid_subdirectory():
|
||||
assert validate_model_subdirectory("valid-model123") is True
|
||||
|
||||
def test_subdirectory_too_long():
|
||||
assert validate_model_subdirectory("a" * 51) is False
|
||||
|
||||
def test_subdirectory_with_double_dots():
|
||||
assert validate_model_subdirectory("model/../unsafe") is False
|
||||
|
||||
def test_subdirectory_with_slash():
|
||||
assert validate_model_subdirectory("model/unsafe") is False
|
||||
|
||||
def test_subdirectory_with_special_characters():
|
||||
assert validate_model_subdirectory("model@unsafe") is False
|
||||
|
||||
def test_subdirectory_with_underscore_and_dash():
|
||||
assert validate_model_subdirectory("valid_model-name") is True
|
||||
|
||||
def test_empty_subdirectory():
|
||||
assert validate_model_subdirectory("") is False
|
||||
|
||||
@pytest.mark.parametrize("filename, expected", [
|
||||
("valid_model.safetensors", True),
|
||||
("valid_model.sft", True),
|
||||
|
792
web/assets/GraphView-BGt8GmeB.css
generated
vendored
Normal file
792
web/assets/GraphView-BGt8GmeB.css
generated
vendored
Normal file
@ -0,0 +1,792 @@
|
||||
|
||||
.editable-text[data-v-54da6fc9] {
|
||||
display: inline;
|
||||
}
|
||||
.editable-text input[data-v-54da6fc9] {
|
||||
width: 100%;
|
||||
box-sizing: border-box;
|
||||
}
|
||||
|
||||
.group-title-editor.node-title-editor[data-v-fc3f26e3] {
|
||||
z-index: 9999;
|
||||
padding: 0.25rem;
|
||||
}
|
||||
[data-v-fc3f26e3] .editable-text {
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
}
|
||||
[data-v-fc3f26e3] .editable-text input {
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
/* Override the default font size */
|
||||
font-size: inherit;
|
||||
}
|
||||
|
||||
.side-bar-button-icon {
|
||||
font-size: var(--sidebar-icon-size) !important;
|
||||
}
|
||||
.side-bar-button-selected .side-bar-button-icon {
|
||||
font-size: var(--sidebar-icon-size) !important;
|
||||
font-weight: bold;
|
||||
}
|
||||
|
||||
.side-bar-button[data-v-caa3ee9c] {
|
||||
width: var(--sidebar-width);
|
||||
height: var(--sidebar-width);
|
||||
border-radius: 0;
|
||||
}
|
||||
.comfyui-body-left .side-bar-button.side-bar-button-selected[data-v-caa3ee9c],
|
||||
.comfyui-body-left .side-bar-button.side-bar-button-selected[data-v-caa3ee9c]:hover {
|
||||
border-left: 4px solid var(--p-button-text-primary-color);
|
||||
}
|
||||
.comfyui-body-right .side-bar-button.side-bar-button-selected[data-v-caa3ee9c],
|
||||
.comfyui-body-right .side-bar-button.side-bar-button-selected[data-v-caa3ee9c]:hover {
|
||||
border-right: 4px solid var(--p-button-text-primary-color);
|
||||
}
|
||||
|
||||
:root {
|
||||
--sidebar-width: 64px;
|
||||
--sidebar-icon-size: 1.5rem;
|
||||
}
|
||||
:root .small-sidebar {
|
||||
--sidebar-width: 40px;
|
||||
--sidebar-icon-size: 1rem;
|
||||
}
|
||||
|
||||
.side-tool-bar-container[data-v-4da64512] {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
align-items: center;
|
||||
|
||||
pointer-events: auto;
|
||||
|
||||
width: var(--sidebar-width);
|
||||
height: 100%;
|
||||
|
||||
background-color: var(--comfy-menu-bg);
|
||||
color: var(--fg-color);
|
||||
}
|
||||
.side-tool-bar-end[data-v-4da64512] {
|
||||
align-self: flex-end;
|
||||
margin-top: auto;
|
||||
}
|
||||
.sidebar-content-container[data-v-4da64512] {
|
||||
height: 100%;
|
||||
overflow-y: auto;
|
||||
}
|
||||
|
||||
.p-splitter-gutter {
|
||||
pointer-events: auto;
|
||||
}
|
||||
.gutter-hidden {
|
||||
display: none !important;
|
||||
}
|
||||
|
||||
.side-bar-panel[data-v-b9df3042] {
|
||||
background-color: var(--bg-color);
|
||||
pointer-events: auto;
|
||||
}
|
||||
.splitter-overlay[data-v-b9df3042] {
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
position: absolute;
|
||||
top: 0;
|
||||
left: 0;
|
||||
background-color: transparent;
|
||||
pointer-events: none;
|
||||
/* Set it the same as the ComfyUI menu */
|
||||
/* Note: Lite-graph DOM widgets have the same z-index as the node id, so
|
||||
999 should be sufficient to make sure splitter overlays on node's DOM
|
||||
widgets */
|
||||
z-index: 999;
|
||||
border: none;
|
||||
}
|
||||
|
||||
._content[data-v-e7b35fd9] {
|
||||
|
||||
display: flex;
|
||||
|
||||
flex-direction: column
|
||||
}
|
||||
._content[data-v-e7b35fd9] > :not([hidden]) ~ :not([hidden]) {
|
||||
|
||||
--tw-space-y-reverse: 0;
|
||||
|
||||
margin-top: calc(0.5rem * calc(1 - var(--tw-space-y-reverse)));
|
||||
|
||||
margin-bottom: calc(0.5rem * var(--tw-space-y-reverse))
|
||||
}
|
||||
._footer[data-v-e7b35fd9] {
|
||||
|
||||
display: flex;
|
||||
|
||||
flex-direction: column;
|
||||
|
||||
align-items: flex-end;
|
||||
|
||||
padding-top: 1rem
|
||||
}
|
||||
|
||||
[data-v-37f672ab] .highlight {
|
||||
background-color: var(--p-primary-color);
|
||||
color: var(--p-primary-contrast-color);
|
||||
font-weight: bold;
|
||||
border-radius: 0.25rem;
|
||||
padding: 0rem 0.125rem;
|
||||
margin: -0.125rem 0.125rem;
|
||||
}
|
||||
|
||||
.slot_row[data-v-ff07c900] {
|
||||
padding: 2px;
|
||||
}
|
||||
|
||||
/* Original N-Sidebar styles */
|
||||
._sb_dot[data-v-ff07c900] {
|
||||
width: 8px;
|
||||
height: 8px;
|
||||
border-radius: 50%;
|
||||
background-color: grey;
|
||||
}
|
||||
.node_header[data-v-ff07c900] {
|
||||
line-height: 1;
|
||||
padding: 8px 13px 7px;
|
||||
margin-bottom: 5px;
|
||||
font-size: 15px;
|
||||
text-wrap: nowrap;
|
||||
overflow: hidden;
|
||||
display: flex;
|
||||
align-items: center;
|
||||
}
|
||||
.headdot[data-v-ff07c900] {
|
||||
width: 10px;
|
||||
height: 10px;
|
||||
float: inline-start;
|
||||
margin-right: 8px;
|
||||
}
|
||||
.IMAGE[data-v-ff07c900] {
|
||||
background-color: #64b5f6;
|
||||
}
|
||||
.VAE[data-v-ff07c900] {
|
||||
background-color: #ff6e6e;
|
||||
}
|
||||
.LATENT[data-v-ff07c900] {
|
||||
background-color: #ff9cf9;
|
||||
}
|
||||
.MASK[data-v-ff07c900] {
|
||||
background-color: #81c784;
|
||||
}
|
||||
.CONDITIONING[data-v-ff07c900] {
|
||||
background-color: #ffa931;
|
||||
}
|
||||
.CLIP[data-v-ff07c900] {
|
||||
background-color: #ffd500;
|
||||
}
|
||||
.MODEL[data-v-ff07c900] {
|
||||
background-color: #b39ddb;
|
||||
}
|
||||
.CONTROL_NET[data-v-ff07c900] {
|
||||
background-color: #a5d6a7;
|
||||
}
|
||||
._sb_node_preview[data-v-ff07c900] {
|
||||
background-color: var(--comfy-menu-bg);
|
||||
font-family: 'Open Sans', sans-serif;
|
||||
font-size: small;
|
||||
color: var(--descrip-text);
|
||||
border: 1px solid var(--descrip-text);
|
||||
min-width: 300px;
|
||||
width: -moz-min-content;
|
||||
width: min-content;
|
||||
height: -moz-fit-content;
|
||||
height: fit-content;
|
||||
z-index: 9999;
|
||||
border-radius: 12px;
|
||||
overflow: hidden;
|
||||
font-size: 12px;
|
||||
padding-bottom: 10px;
|
||||
}
|
||||
._sb_node_preview ._sb_description[data-v-ff07c900] {
|
||||
margin: 10px;
|
||||
padding: 6px;
|
||||
background: var(--border-color);
|
||||
border-radius: 5px;
|
||||
font-style: italic;
|
||||
font-weight: 500;
|
||||
font-size: 0.9rem;
|
||||
word-break: break-word;
|
||||
}
|
||||
._sb_table[data-v-ff07c900] {
|
||||
display: grid;
|
||||
|
||||
grid-column-gap: 10px;
|
||||
/* Spazio tra le colonne */
|
||||
width: 100%;
|
||||
/* Imposta la larghezza della tabella al 100% del contenitore */
|
||||
}
|
||||
._sb_row[data-v-ff07c900] {
|
||||
display: grid;
|
||||
grid-template-columns: 10px 1fr 1fr 1fr 10px;
|
||||
grid-column-gap: 10px;
|
||||
align-items: center;
|
||||
padding-left: 9px;
|
||||
padding-right: 9px;
|
||||
}
|
||||
._sb_row_string[data-v-ff07c900] {
|
||||
grid-template-columns: 10px 1fr 1fr 10fr 1fr;
|
||||
}
|
||||
._sb_col[data-v-ff07c900] {
|
||||
border: 0px solid #000;
|
||||
display: flex;
|
||||
align-items: flex-end;
|
||||
flex-direction: row-reverse;
|
||||
flex-wrap: nowrap;
|
||||
align-content: flex-start;
|
||||
justify-content: flex-end;
|
||||
}
|
||||
._sb_inherit[data-v-ff07c900] {
|
||||
display: inherit;
|
||||
}
|
||||
._long_field[data-v-ff07c900] {
|
||||
background: var(--bg-color);
|
||||
border: 2px solid var(--border-color);
|
||||
margin: 5px 5px 0 5px;
|
||||
border-radius: 10px;
|
||||
line-height: 1.7;
|
||||
text-wrap: nowrap;
|
||||
}
|
||||
._sb_arrow[data-v-ff07c900] {
|
||||
color: var(--fg-color);
|
||||
}
|
||||
._sb_preview_badge[data-v-ff07c900] {
|
||||
text-align: center;
|
||||
background: var(--comfy-input-bg);
|
||||
font-weight: bold;
|
||||
color: var(--error-text);
|
||||
}
|
||||
|
||||
.comfy-vue-node-search-container[data-v-2d409367] {
|
||||
display: flex;
|
||||
width: 100%;
|
||||
min-width: 26rem;
|
||||
align-items: center;
|
||||
justify-content: center;
|
||||
}
|
||||
.comfy-vue-node-search-container[data-v-2d409367] * {
|
||||
pointer-events: auto;
|
||||
}
|
||||
.comfy-vue-node-preview-container[data-v-2d409367] {
|
||||
position: absolute;
|
||||
left: -350px;
|
||||
top: 50px;
|
||||
}
|
||||
.comfy-vue-node-search-box[data-v-2d409367] {
|
||||
z-index: 10;
|
||||
flex-grow: 1;
|
||||
}
|
||||
._filter-button[data-v-2d409367] {
|
||||
z-index: 10;
|
||||
}
|
||||
._dialog[data-v-2d409367] {
|
||||
min-width: 26rem;
|
||||
}
|
||||
|
||||
.invisible-dialog-root {
|
||||
width: 60%;
|
||||
min-width: 24rem;
|
||||
max-width: 48rem;
|
||||
border: 0 !important;
|
||||
background-color: transparent !important;
|
||||
margin-top: 25vh;
|
||||
margin-left: 400px;
|
||||
}
|
||||
@media all and (max-width: 768px) {
|
||||
.invisible-dialog-root {
|
||||
margin-left: 0px;
|
||||
}
|
||||
}
|
||||
.node-search-box-dialog-mask {
|
||||
align-items: flex-start !important;
|
||||
}
|
||||
|
||||
.node-tooltip[data-v-0a4402f9] {
|
||||
background: var(--comfy-input-bg);
|
||||
border-radius: 5px;
|
||||
box-shadow: 0 0 5px rgba(0, 0, 0, 0.4);
|
||||
color: var(--input-text);
|
||||
font-family: sans-serif;
|
||||
left: 0;
|
||||
max-width: 30vw;
|
||||
padding: 4px 8px;
|
||||
position: absolute;
|
||||
top: 0;
|
||||
transform: translate(5px, calc(-100% - 5px));
|
||||
white-space: pre-wrap;
|
||||
z-index: 99999;
|
||||
}
|
||||
|
||||
.p-buttongroup-vertical[data-v-ce8bd6ac] {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
border-radius: var(--p-button-border-radius);
|
||||
overflow: hidden;
|
||||
border: 1px solid var(--p-panel-border-color);
|
||||
}
|
||||
.p-buttongroup-vertical .p-button[data-v-ce8bd6ac] {
|
||||
margin: 0;
|
||||
border-radius: 0;
|
||||
}
|
||||
|
||||
.comfy-image-wrap[data-v-9bc23daf] {
|
||||
display: contents;
|
||||
}
|
||||
.comfy-image-blur[data-v-9bc23daf] {
|
||||
position: absolute;
|
||||
top: 0;
|
||||
left: 0;
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
-o-object-fit: cover;
|
||||
object-fit: cover;
|
||||
}
|
||||
.comfy-image-main[data-v-9bc23daf] {
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
-o-object-fit: cover;
|
||||
object-fit: cover;
|
||||
-o-object-position: center;
|
||||
object-position: center;
|
||||
z-index: 1;
|
||||
}
|
||||
.contain .comfy-image-wrap[data-v-9bc23daf] {
|
||||
position: relative;
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
}
|
||||
.contain .comfy-image-main[data-v-9bc23daf] {
|
||||
-o-object-fit: contain;
|
||||
object-fit: contain;
|
||||
-webkit-backdrop-filter: blur(10px);
|
||||
backdrop-filter: blur(10px);
|
||||
position: absolute;
|
||||
}
|
||||
.broken-image-placeholder[data-v-9bc23daf] {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
align-items: center;
|
||||
justify-content: center;
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
margin: 2rem;
|
||||
}
|
||||
.broken-image-placeholder i[data-v-9bc23daf] {
|
||||
font-size: 3rem;
|
||||
margin-bottom: 0.5rem;
|
||||
}
|
||||
|
||||
.result-container[data-v-d9c060ae] {
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
aspect-ratio: 1 / 1;
|
||||
overflow: hidden;
|
||||
position: relative;
|
||||
display: flex;
|
||||
justify-content: center;
|
||||
align-items: center;
|
||||
}
|
||||
.image-preview-mask[data-v-d9c060ae] {
|
||||
position: absolute;
|
||||
left: 50%;
|
||||
top: 50%;
|
||||
transform: translate(-50%, -50%);
|
||||
display: flex;
|
||||
align-items: center;
|
||||
justify-content: center;
|
||||
opacity: 0;
|
||||
transition: opacity 0.3s ease;
|
||||
z-index: 1;
|
||||
}
|
||||
.result-container:hover .image-preview-mask[data-v-d9c060ae] {
|
||||
opacity: 1;
|
||||
}
|
||||
|
||||
.task-result-preview[data-v-d4c8a1fe] {
|
||||
aspect-ratio: 1 / 1;
|
||||
overflow: hidden;
|
||||
display: flex;
|
||||
justify-content: center;
|
||||
align-items: center;
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
}
|
||||
.task-result-preview i[data-v-d4c8a1fe],
|
||||
.task-result-preview span[data-v-d4c8a1fe] {
|
||||
font-size: 2rem;
|
||||
}
|
||||
.task-item[data-v-d4c8a1fe] {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
border-radius: 4px;
|
||||
overflow: hidden;
|
||||
position: relative;
|
||||
}
|
||||
.task-item-details[data-v-d4c8a1fe] {
|
||||
position: absolute;
|
||||
bottom: 0;
|
||||
padding: 0.6rem;
|
||||
display: flex;
|
||||
justify-content: space-between;
|
||||
align-items: center;
|
||||
width: 100%;
|
||||
z-index: 1;
|
||||
}
|
||||
.task-node-link[data-v-d4c8a1fe] {
|
||||
padding: 2px;
|
||||
}
|
||||
|
||||
/* In dark mode, transparent background color for tags is not ideal for tags that
|
||||
are floating on top of images. */
|
||||
.tag-wrapper[data-v-d4c8a1fe] {
|
||||
background-color: var(--p-primary-contrast-color);
|
||||
border-radius: 6px;
|
||||
display: inline-flex;
|
||||
}
|
||||
.node-name-tag[data-v-d4c8a1fe] {
|
||||
word-break: break-all;
|
||||
}
|
||||
.status-tag-group[data-v-d4c8a1fe] {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
}
|
||||
.progress-preview-img[data-v-d4c8a1fe] {
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
-o-object-fit: cover;
|
||||
object-fit: cover;
|
||||
-o-object-position: center;
|
||||
object-position: center;
|
||||
}
|
||||
|
||||
/* PrimeVue's galleria teleports the fullscreen gallery out of subtree so we
|
||||
cannot use scoped style here. */
|
||||
img.galleria-image {
|
||||
max-width: 100vw;
|
||||
max-height: 100vh;
|
||||
-o-object-fit: contain;
|
||||
object-fit: contain;
|
||||
}
|
||||
.p-galleria-close-button {
|
||||
/* Set z-index so the close button doesn't get hidden behind the image when image is large */
|
||||
z-index: 1;
|
||||
}
|
||||
|
||||
.comfy-vue-side-bar-container[data-v-1b0a8fe3] {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
height: 100%;
|
||||
overflow: hidden;
|
||||
}
|
||||
.comfy-vue-side-bar-header[data-v-1b0a8fe3] {
|
||||
flex-shrink: 0;
|
||||
border-left: none;
|
||||
border-right: none;
|
||||
border-top: none;
|
||||
border-radius: 0;
|
||||
padding: 0.25rem 1rem;
|
||||
min-height: 2.5rem;
|
||||
}
|
||||
.comfy-vue-side-bar-header-span[data-v-1b0a8fe3] {
|
||||
font-size: small;
|
||||
}
|
||||
.comfy-vue-side-bar-body[data-v-1b0a8fe3] {
|
||||
flex-grow: 1;
|
||||
overflow: auto;
|
||||
scrollbar-width: thin;
|
||||
scrollbar-color: transparent transparent;
|
||||
}
|
||||
.comfy-vue-side-bar-body[data-v-1b0a8fe3]::-webkit-scrollbar {
|
||||
width: 1px;
|
||||
}
|
||||
.comfy-vue-side-bar-body[data-v-1b0a8fe3]::-webkit-scrollbar-thumb {
|
||||
background-color: transparent;
|
||||
}
|
||||
|
||||
.scroll-container[data-v-08fa89b1] {
|
||||
height: 100%;
|
||||
overflow-y: auto;
|
||||
}
|
||||
.queue-grid[data-v-08fa89b1] {
|
||||
display: grid;
|
||||
grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
|
||||
padding: 0.5rem;
|
||||
gap: 0.5rem;
|
||||
}
|
||||
|
||||
.tree-node[data-v-633e27ab] {
|
||||
width: 100%;
|
||||
display: flex;
|
||||
align-items: center;
|
||||
justify-content: space-between;
|
||||
}
|
||||
.leaf-count-badge[data-v-633e27ab] {
|
||||
margin-left: 0.5rem;
|
||||
}
|
||||
.node-content[data-v-633e27ab] {
|
||||
display: flex;
|
||||
align-items: center;
|
||||
flex-grow: 1;
|
||||
}
|
||||
.leaf-label[data-v-633e27ab] {
|
||||
margin-left: 0.5rem;
|
||||
}
|
||||
[data-v-633e27ab] .editable-text span {
|
||||
word-break: break-all;
|
||||
}
|
||||
|
||||
[data-v-bd7bae90] .tree-explorer-node-label {
|
||||
width: 100%;
|
||||
display: flex;
|
||||
align-items: center;
|
||||
margin-left: var(--p-tree-node-gap);
|
||||
flex-grow: 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* The following styles are necessary to avoid layout shift when dragging nodes over folders.
|
||||
* By setting the position to relative on the parent and using an absolutely positioned pseudo-element,
|
||||
* we can create a visual indicator for the drop target without affecting the layout of other elements.
|
||||
*/
|
||||
[data-v-bd7bae90] .p-tree-node-content:has(.tree-folder) {
|
||||
position: relative;
|
||||
}
|
||||
[data-v-bd7bae90] .p-tree-node-content:has(.tree-folder.can-drop)::after {
|
||||
content: '';
|
||||
position: absolute;
|
||||
top: 0;
|
||||
left: 0;
|
||||
right: 0;
|
||||
bottom: 0;
|
||||
border: 1px solid var(--p-content-color);
|
||||
pointer-events: none;
|
||||
}
|
||||
|
||||
.node-lib-node-container[data-v-90dfee08] {
|
||||
height: 100%;
|
||||
width: 100%
|
||||
}
|
||||
|
||||
.p-selectbutton .p-button[data-v-91077f2a] {
|
||||
padding: 0.5rem;
|
||||
}
|
||||
.p-selectbutton .p-button .pi[data-v-91077f2a] {
|
||||
font-size: 1.5rem;
|
||||
}
|
||||
.field[data-v-91077f2a] {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
gap: 0.5rem;
|
||||
}
|
||||
.color-picker-container[data-v-91077f2a] {
|
||||
display: flex;
|
||||
align-items: center;
|
||||
gap: 0.5rem;
|
||||
}
|
||||
|
||||
.node-lib-filter-popup {
|
||||
margin-left: -13px;
|
||||
}
|
||||
|
||||
[data-v-f6a7371a] .comfy-vue-side-bar-body {
|
||||
background: var(--p-tree-background);
|
||||
}
|
||||
[data-v-f6a7371a] .node-lib-bookmark-tree-explorer {
|
||||
padding-bottom: 2px;
|
||||
}
|
||||
[data-v-f6a7371a] .p-divider {
|
||||
margin: var(--comfy-tree-explorer-item-padding) 0px;
|
||||
}
|
||||
|
||||
.model_preview[data-v-32e6c4d9] {
|
||||
background-color: var(--comfy-menu-bg);
|
||||
font-family: 'Open Sans', sans-serif;
|
||||
color: var(--descrip-text);
|
||||
border: 1px solid var(--descrip-text);
|
||||
min-width: 300px;
|
||||
max-width: 500px;
|
||||
width: -moz-fit-content;
|
||||
width: fit-content;
|
||||
height: -moz-fit-content;
|
||||
height: fit-content;
|
||||
z-index: 9999;
|
||||
border-radius: 12px;
|
||||
overflow: hidden;
|
||||
font-size: 12px;
|
||||
padding: 10px;
|
||||
}
|
||||
.model_preview_image[data-v-32e6c4d9] {
|
||||
margin: auto;
|
||||
width: -moz-fit-content;
|
||||
width: fit-content;
|
||||
}
|
||||
.model_preview_image img[data-v-32e6c4d9] {
|
||||
max-width: 100%;
|
||||
max-height: 150px;
|
||||
-o-object-fit: contain;
|
||||
object-fit: contain;
|
||||
}
|
||||
.model_preview_title[data-v-32e6c4d9] {
|
||||
font-weight: bold;
|
||||
text-align: center;
|
||||
font-size: 14px;
|
||||
}
|
||||
.model_preview_top_container[data-v-32e6c4d9] {
|
||||
text-align: center;
|
||||
line-height: 0.5;
|
||||
}
|
||||
.model_preview_filename[data-v-32e6c4d9],
|
||||
.model_preview_author[data-v-32e6c4d9],
|
||||
.model_preview_architecture[data-v-32e6c4d9] {
|
||||
display: inline-block;
|
||||
text-align: center;
|
||||
margin: 5px;
|
||||
font-size: 10px;
|
||||
}
|
||||
.model_preview_prefix[data-v-32e6c4d9] {
|
||||
font-weight: bold;
|
||||
}
|
||||
|
||||
.model-lib-model-icon-container[data-v-70b69131] {
|
||||
display: inline-block;
|
||||
position: relative;
|
||||
left: 0;
|
||||
height: 1.5rem;
|
||||
vertical-align: top;
|
||||
width: 0px;
|
||||
}
|
||||
.model-lib-model-icon[data-v-70b69131] {
|
||||
background-size: cover;
|
||||
background-position: center;
|
||||
display: inline-block;
|
||||
position: relative;
|
||||
left: -2.5rem;
|
||||
height: 2rem;
|
||||
width: 2rem;
|
||||
vertical-align: top;
|
||||
}
|
||||
|
||||
.pi-fake-spacer {
|
||||
height: 1px;
|
||||
width: 16px;
|
||||
}
|
||||
|
||||
[data-v-74b01bce] .comfy-vue-side-bar-body {
|
||||
background: var(--p-tree-background);
|
||||
}
|
||||
|
||||
[data-v-d2d58252] .comfy-vue-side-bar-body {
|
||||
background: var(--p-tree-background);
|
||||
}
|
||||
|
||||
[data-v-84e785b8] .p-togglebutton::before {
|
||||
display: none
|
||||
}
|
||||
[data-v-84e785b8] .p-togglebutton {
|
||||
position: relative;
|
||||
flex-shrink: 0;
|
||||
border-radius: 0px;
|
||||
background-color: transparent;
|
||||
padding-left: 0.5rem;
|
||||
padding-right: 0.5rem
|
||||
}
|
||||
[data-v-84e785b8] .p-togglebutton.p-togglebutton-checked {
|
||||
border-bottom-width: 2px;
|
||||
border-bottom-color: var(--p-button-text-primary-color)
|
||||
}
|
||||
[data-v-84e785b8] .p-togglebutton-checked .close-button,[data-v-84e785b8] .p-togglebutton:hover .close-button {
|
||||
visibility: visible
|
||||
}
|
||||
.status-indicator[data-v-84e785b8] {
|
||||
position: absolute;
|
||||
font-weight: 700;
|
||||
font-size: 1.5rem;
|
||||
top: 50%;
|
||||
left: 50%;
|
||||
transform: translate(-50%, -50%)
|
||||
}
|
||||
[data-v-84e785b8] .p-togglebutton:hover .status-indicator {
|
||||
display: none
|
||||
}
|
||||
[data-v-84e785b8] .p-togglebutton .close-button {
|
||||
visibility: hidden
|
||||
}
|
||||
|
||||
.top-menubar[data-v-2ec1b620] .p-menubar-item-link svg {
|
||||
display: none;
|
||||
}
|
||||
[data-v-2ec1b620] .p-menubar-submenu.dropdown-direction-up {
|
||||
top: auto;
|
||||
bottom: 100%;
|
||||
flex-direction: column-reverse;
|
||||
}
|
||||
.keybinding-tag[data-v-2ec1b620] {
|
||||
background: var(--p-content-hover-background);
|
||||
border-color: var(--p-content-border-color);
|
||||
border-style: solid;
|
||||
}
|
||||
|
||||
[data-v-713442be] .p-inputtext {
|
||||
border-top-left-radius: 0;
|
||||
border-bottom-left-radius: 0;
|
||||
}
|
||||
|
||||
.comfyui-queue-button[data-v-fcd3efcd] .p-splitbutton-dropdown {
|
||||
border-top-right-radius: 0;
|
||||
border-bottom-right-radius: 0;
|
||||
}
|
||||
|
||||
.actionbar[data-v-bc6c78dd] {
|
||||
pointer-events: all;
|
||||
position: fixed;
|
||||
z-index: 1000;
|
||||
}
|
||||
.actionbar.is-docked[data-v-bc6c78dd] {
|
||||
position: static;
|
||||
border-style: none;
|
||||
background-color: transparent;
|
||||
padding: 0px;
|
||||
}
|
||||
.actionbar.is-dragging[data-v-bc6c78dd] {
|
||||
-webkit-user-select: none;
|
||||
-moz-user-select: none;
|
||||
user-select: none;
|
||||
}
|
||||
[data-v-bc6c78dd] .p-panel-content {
|
||||
padding: 0.25rem;
|
||||
}
|
||||
[data-v-bc6c78dd] .p-panel-header {
|
||||
display: none;
|
||||
}
|
||||
|
||||
.comfyui-menu[data-v-b13fdc92] {
|
||||
width: 100vw;
|
||||
background: var(--comfy-menu-bg);
|
||||
color: var(--fg-color);
|
||||
font-family: Arial, Helvetica, sans-serif;
|
||||
font-size: 0.8em;
|
||||
box-sizing: border-box;
|
||||
z-index: 1000;
|
||||
order: 0;
|
||||
grid-column: 1/-1;
|
||||
max-height: 90vh;
|
||||
}
|
||||
.comfyui-menu.dropzone[data-v-b13fdc92] {
|
||||
background: var(--p-highlight-background);
|
||||
}
|
||||
.comfyui-menu.dropzone-active[data-v-b13fdc92] {
|
||||
background: var(--p-highlight-background-focus);
|
||||
}
|
||||
.comfyui-logo[data-v-b13fdc92] {
|
||||
font-size: 1.2em;
|
||||
-webkit-user-select: none;
|
||||
-moz-user-select: none;
|
||||
user-select: none;
|
||||
cursor: default;
|
||||
}
|
17465
web/assets/GraphView-CVV2XJjS.js
generated
vendored
Normal file
17465
web/assets/GraphView-CVV2XJjS.js
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
1
web/assets/GraphView-CVV2XJjS.js.map
generated
vendored
Normal file
1
web/assets/GraphView-CVV2XJjS.js.map
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
3142
web/assets/GraphView-DN9xGvF3.js
generated
vendored
3142
web/assets/GraphView-DN9xGvF3.js
generated
vendored
File diff suppressed because one or more lines are too long
1
web/assets/GraphView-DN9xGvF3.js.map
generated
vendored
1
web/assets/GraphView-DN9xGvF3.js.map
generated
vendored
File diff suppressed because one or more lines are too long
158
web/assets/GraphView-DXU9yRen.css
generated
vendored
158
web/assets/GraphView-DXU9yRen.css
generated
vendored
@ -1,158 +0,0 @@
|
||||
|
||||
.group-title-editor.node-title-editor[data-v-fc3f26e3] {
|
||||
z-index: 9999;
|
||||
padding: 0.25rem;
|
||||
}
|
||||
[data-v-fc3f26e3] .editable-text {
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
}
|
||||
[data-v-fc3f26e3] .editable-text input {
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
/* Override the default font size */
|
||||
font-size: inherit;
|
||||
}
|
||||
|
||||
.side-bar-button-icon {
|
||||
font-size: var(--sidebar-icon-size) !important;
|
||||
}
|
||||
.side-bar-button-selected .side-bar-button-icon {
|
||||
font-size: var(--sidebar-icon-size) !important;
|
||||
font-weight: bold;
|
||||
}
|
||||
|
||||
.side-bar-button[data-v-caa3ee9c] {
|
||||
width: var(--sidebar-width);
|
||||
height: var(--sidebar-width);
|
||||
border-radius: 0;
|
||||
}
|
||||
.comfyui-body-left .side-bar-button.side-bar-button-selected[data-v-caa3ee9c],
|
||||
.comfyui-body-left .side-bar-button.side-bar-button-selected[data-v-caa3ee9c]:hover {
|
||||
border-left: 4px solid var(--p-button-text-primary-color);
|
||||
}
|
||||
.comfyui-body-right .side-bar-button.side-bar-button-selected[data-v-caa3ee9c],
|
||||
.comfyui-body-right .side-bar-button.side-bar-button-selected[data-v-caa3ee9c]:hover {
|
||||
border-right: 4px solid var(--p-button-text-primary-color);
|
||||
}
|
||||
|
||||
:root {
|
||||
--sidebar-width: 64px;
|
||||
--sidebar-icon-size: 1.5rem;
|
||||
}
|
||||
:root .small-sidebar {
|
||||
--sidebar-width: 40px;
|
||||
--sidebar-icon-size: 1rem;
|
||||
}
|
||||
|
||||
.side-tool-bar-container[data-v-ed7a1148] {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
align-items: center;
|
||||
|
||||
pointer-events: auto;
|
||||
|
||||
width: var(--sidebar-width);
|
||||
height: 100%;
|
||||
|
||||
background-color: var(--comfy-menu-bg);
|
||||
color: var(--fg-color);
|
||||
}
|
||||
.side-tool-bar-end[data-v-ed7a1148] {
|
||||
align-self: flex-end;
|
||||
margin-top: auto;
|
||||
}
|
||||
.sidebar-content-container[data-v-ed7a1148] {
|
||||
height: 100%;
|
||||
overflow-y: auto;
|
||||
}
|
||||
|
||||
.p-splitter-gutter {
|
||||
pointer-events: auto;
|
||||
}
|
||||
.gutter-hidden {
|
||||
display: none !important;
|
||||
}
|
||||
|
||||
.side-bar-panel[data-v-edca8328] {
|
||||
background-color: var(--bg-color);
|
||||
pointer-events: auto;
|
||||
}
|
||||
.splitter-overlay[data-v-edca8328] {
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
position: absolute;
|
||||
top: 0;
|
||||
left: 0;
|
||||
background-color: transparent;
|
||||
pointer-events: none;
|
||||
/* Set it the same as the ComfyUI menu */
|
||||
/* Note: Lite-graph DOM widgets have the same z-index as the node id, so
|
||||
999 should be sufficient to make sure splitter overlays on node's DOM
|
||||
widgets */
|
||||
z-index: 999;
|
||||
border: none;
|
||||
}
|
||||
|
||||
[data-v-37f672ab] .highlight {
|
||||
background-color: var(--p-primary-color);
|
||||
color: var(--p-primary-contrast-color);
|
||||
font-weight: bold;
|
||||
border-radius: 0.25rem;
|
||||
padding: 0rem 0.125rem;
|
||||
margin: -0.125rem 0.125rem;
|
||||
}
|
||||
|
||||
.comfy-vue-node-search-container[data-v-2d409367] {
|
||||
display: flex;
|
||||
width: 100%;
|
||||
min-width: 26rem;
|
||||
align-items: center;
|
||||
justify-content: center;
|
||||
}
|
||||
.comfy-vue-node-search-container[data-v-2d409367] * {
|
||||
pointer-events: auto;
|
||||
}
|
||||
.comfy-vue-node-preview-container[data-v-2d409367] {
|
||||
position: absolute;
|
||||
left: -350px;
|
||||
top: 50px;
|
||||
}
|
||||
.comfy-vue-node-search-box[data-v-2d409367] {
|
||||
z-index: 10;
|
||||
flex-grow: 1;
|
||||
}
|
||||
._filter-button[data-v-2d409367] {
|
||||
z-index: 10;
|
||||
}
|
||||
._dialog[data-v-2d409367] {
|
||||
min-width: 26rem;
|
||||
}
|
||||
|
||||
.invisible-dialog-root {
|
||||
width: 30%;
|
||||
min-width: 24rem;
|
||||
max-width: 48rem;
|
||||
border: 0 !important;
|
||||
background-color: transparent !important;
|
||||
margin-top: 25vh;
|
||||
}
|
||||
.node-search-box-dialog-mask {
|
||||
align-items: flex-start !important;
|
||||
}
|
||||
|
||||
.node-tooltip[data-v-e0597bf9] {
|
||||
background: var(--comfy-input-bg);
|
||||
border-radius: 5px;
|
||||
box-shadow: 0 0 5px rgba(0, 0, 0, 0.4);
|
||||
color: var(--input-text);
|
||||
font-family: sans-serif;
|
||||
left: 0;
|
||||
max-width: 30vw;
|
||||
padding: 4px 8px;
|
||||
position: absolute;
|
||||
top: 0;
|
||||
transform: translate(5px, calc(-100% - 5px));
|
||||
white-space: pre-wrap;
|
||||
z-index: 99999;
|
||||
}
|
865
web/assets/colorPalette-D5oi2-2V.js
generated
vendored
Normal file
865
web/assets/colorPalette-D5oi2-2V.js
generated
vendored
Normal file
@ -0,0 +1,865 @@
|
||||
var __defProp = Object.defineProperty;
|
||||
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
||||
import { k as app, aP as LGraphCanvas, bO as useToastStore, ca as $el, z as LiteGraph } from "./index-DGAbdBYF.js";
|
||||
const colorPalettes = {
|
||||
dark: {
|
||||
id: "dark",
|
||||
name: "Dark (Default)",
|
||||
colors: {
|
||||
node_slot: {
|
||||
CLIP: "#FFD500",
|
||||
// bright yellow
|
||||
CLIP_VISION: "#A8DADC",
|
||||
// light blue-gray
|
||||
CLIP_VISION_OUTPUT: "#ad7452",
|
||||
// rusty brown-orange
|
||||
CONDITIONING: "#FFA931",
|
||||
// vibrant orange-yellow
|
||||
CONTROL_NET: "#6EE7B7",
|
||||
// soft mint green
|
||||
IMAGE: "#64B5F6",
|
||||
// bright sky blue
|
||||
LATENT: "#FF9CF9",
|
||||
// light pink-purple
|
||||
MASK: "#81C784",
|
||||
// muted green
|
||||
MODEL: "#B39DDB",
|
||||
// light lavender-purple
|
||||
STYLE_MODEL: "#C2FFAE",
|
||||
// light green-yellow
|
||||
VAE: "#FF6E6E",
|
||||
// bright red
|
||||
NOISE: "#B0B0B0",
|
||||
// gray
|
||||
GUIDER: "#66FFFF",
|
||||
// cyan
|
||||
SAMPLER: "#ECB4B4",
|
||||
// very soft red
|
||||
SIGMAS: "#CDFFCD",
|
||||
// soft lime green
|
||||
TAESD: "#DCC274"
|
||||
// cheesecake
|
||||
},
|
||||
litegraph_base: {
|
||||
BACKGROUND_IMAGE: "",
|
||||
CLEAR_BACKGROUND_COLOR: "#222",
|
||||
NODE_TITLE_COLOR: "#999",
|
||||
NODE_SELECTED_TITLE_COLOR: "#FFF",
|
||||
NODE_TEXT_SIZE: 14,
|
||||
NODE_TEXT_COLOR: "#AAA",
|
||||
NODE_SUBTEXT_SIZE: 12,
|
||||
NODE_DEFAULT_COLOR: "#333",
|
||||
NODE_DEFAULT_BGCOLOR: "#353535",
|
||||
NODE_DEFAULT_BOXCOLOR: "#666",
|
||||
NODE_DEFAULT_SHAPE: "box",
|
||||
NODE_BOX_OUTLINE_COLOR: "#FFF",
|
||||
NODE_BYPASS_BGCOLOR: "#FF00FF",
|
||||
DEFAULT_SHADOW_COLOR: "rgba(0,0,0,0.5)",
|
||||
DEFAULT_GROUP_FONT: 24,
|
||||
WIDGET_BGCOLOR: "#222",
|
||||
WIDGET_OUTLINE_COLOR: "#666",
|
||||
WIDGET_TEXT_COLOR: "#DDD",
|
||||
WIDGET_SECONDARY_TEXT_COLOR: "#999",
|
||||
LINK_COLOR: "#9A9",
|
||||
EVENT_LINK_COLOR: "#A86",
|
||||
CONNECTING_LINK_COLOR: "#AFA",
|
||||
BADGE_FG_COLOR: "#FFF",
|
||||
BADGE_BG_COLOR: "#0F1F0F"
|
||||
},
|
||||
comfy_base: {
|
||||
"fg-color": "#fff",
|
||||
"bg-color": "#202020",
|
||||
"comfy-menu-bg": "#353535",
|
||||
"comfy-input-bg": "#222",
|
||||
"input-text": "#ddd",
|
||||
"descrip-text": "#999",
|
||||
"drag-text": "#ccc",
|
||||
"error-text": "#ff4444",
|
||||
"border-color": "#4e4e4e",
|
||||
"tr-even-bg-color": "#222",
|
||||
"tr-odd-bg-color": "#353535",
|
||||
"content-bg": "#4e4e4e",
|
||||
"content-fg": "#fff",
|
||||
"content-hover-bg": "#222",
|
||||
"content-hover-fg": "#fff"
|
||||
}
|
||||
}
|
||||
},
|
||||
light: {
|
||||
id: "light",
|
||||
name: "Light",
|
||||
colors: {
|
||||
node_slot: {
|
||||
CLIP: "#FFA726",
|
||||
// orange
|
||||
CLIP_VISION: "#5C6BC0",
|
||||
// indigo
|
||||
CLIP_VISION_OUTPUT: "#8D6E63",
|
||||
// brown
|
||||
CONDITIONING: "#EF5350",
|
||||
// red
|
||||
CONTROL_NET: "#66BB6A",
|
||||
// green
|
||||
IMAGE: "#42A5F5",
|
||||
// blue
|
||||
LATENT: "#AB47BC",
|
||||
// purple
|
||||
MASK: "#9CCC65",
|
||||
// light green
|
||||
MODEL: "#7E57C2",
|
||||
// deep purple
|
||||
STYLE_MODEL: "#D4E157",
|
||||
// lime
|
||||
VAE: "#FF7043"
|
||||
// deep orange
|
||||
},
|
||||
litegraph_base: {
|
||||
BACKGROUND_IMAGE: "",
|
||||
CLEAR_BACKGROUND_COLOR: "lightgray",
|
||||
NODE_TITLE_COLOR: "#222",
|
||||
NODE_SELECTED_TITLE_COLOR: "#000",
|
||||
NODE_TEXT_SIZE: 14,
|
||||
NODE_TEXT_COLOR: "#444",
|
||||
NODE_SUBTEXT_SIZE: 12,
|
||||
NODE_DEFAULT_COLOR: "#F7F7F7",
|
||||
NODE_DEFAULT_BGCOLOR: "#F5F5F5",
|
||||
NODE_DEFAULT_BOXCOLOR: "#CCC",
|
||||
NODE_DEFAULT_SHAPE: "box",
|
||||
NODE_BOX_OUTLINE_COLOR: "#000",
|
||||
NODE_BYPASS_BGCOLOR: "#FF00FF",
|
||||
DEFAULT_SHADOW_COLOR: "rgba(0,0,0,0.1)",
|
||||
DEFAULT_GROUP_FONT: 24,
|
||||
WIDGET_BGCOLOR: "#D4D4D4",
|
||||
WIDGET_OUTLINE_COLOR: "#999",
|
||||
WIDGET_TEXT_COLOR: "#222",
|
||||
WIDGET_SECONDARY_TEXT_COLOR: "#555",
|
||||
LINK_COLOR: "#4CAF50",
|
||||
EVENT_LINK_COLOR: "#FF9800",
|
||||
CONNECTING_LINK_COLOR: "#2196F3",
|
||||
BADGE_FG_COLOR: "#000",
|
||||
BADGE_BG_COLOR: "#FFF"
|
||||
},
|
||||
comfy_base: {
|
||||
"fg-color": "#222",
|
||||
"bg-color": "#DDD",
|
||||
"comfy-menu-bg": "#F5F5F5",
|
||||
"comfy-input-bg": "#C9C9C9",
|
||||
"input-text": "#222",
|
||||
"descrip-text": "#444",
|
||||
"drag-text": "#555",
|
||||
"error-text": "#F44336",
|
||||
"border-color": "#888",
|
||||
"tr-even-bg-color": "#f9f9f9",
|
||||
"tr-odd-bg-color": "#fff",
|
||||
"content-bg": "#e0e0e0",
|
||||
"content-fg": "#222",
|
||||
"content-hover-bg": "#adadad",
|
||||
"content-hover-fg": "#222"
|
||||
}
|
||||
}
|
||||
},
|
||||
solarized: {
|
||||
id: "solarized",
|
||||
name: "Solarized",
|
||||
colors: {
|
||||
node_slot: {
|
||||
CLIP: "#2AB7CA",
|
||||
// light blue
|
||||
CLIP_VISION: "#6c71c4",
|
||||
// blue violet
|
||||
CLIP_VISION_OUTPUT: "#859900",
|
||||
// olive green
|
||||
CONDITIONING: "#d33682",
|
||||
// magenta
|
||||
CONTROL_NET: "#d1ffd7",
|
||||
// light mint green
|
||||
IMAGE: "#5940bb",
|
||||
// deep blue violet
|
||||
LATENT: "#268bd2",
|
||||
// blue
|
||||
MASK: "#CCC9E7",
|
||||
// light purple-gray
|
||||
MODEL: "#dc322f",
|
||||
// red
|
||||
STYLE_MODEL: "#1a998a",
|
||||
// teal
|
||||
UPSCALE_MODEL: "#054A29",
|
||||
// dark green
|
||||
VAE: "#facfad"
|
||||
// light pink-orange
|
||||
},
|
||||
litegraph_base: {
|
||||
NODE_TITLE_COLOR: "#fdf6e3",
|
||||
// Base3
|
||||
NODE_SELECTED_TITLE_COLOR: "#A9D400",
|
||||
NODE_TEXT_SIZE: 14,
|
||||
NODE_TEXT_COLOR: "#657b83",
|
||||
// Base00
|
||||
NODE_SUBTEXT_SIZE: 12,
|
||||
NODE_DEFAULT_COLOR: "#094656",
|
||||
NODE_DEFAULT_BGCOLOR: "#073642",
|
||||
// Base02
|
||||
NODE_DEFAULT_BOXCOLOR: "#839496",
|
||||
// Base0
|
||||
NODE_DEFAULT_SHAPE: "box",
|
||||
NODE_BOX_OUTLINE_COLOR: "#fdf6e3",
|
||||
// Base3
|
||||
NODE_BYPASS_BGCOLOR: "#FF00FF",
|
||||
DEFAULT_SHADOW_COLOR: "rgba(0,0,0,0.5)",
|
||||
DEFAULT_GROUP_FONT: 24,
|
||||
WIDGET_BGCOLOR: "#002b36",
|
||||
// Base03
|
||||
WIDGET_OUTLINE_COLOR: "#839496",
|
||||
// Base0
|
||||
WIDGET_TEXT_COLOR: "#fdf6e3",
|
||||
// Base3
|
||||
WIDGET_SECONDARY_TEXT_COLOR: "#93a1a1",
|
||||
// Base1
|
||||
LINK_COLOR: "#2aa198",
|
||||
// Solarized Cyan
|
||||
EVENT_LINK_COLOR: "#268bd2",
|
||||
// Solarized Blue
|
||||
CONNECTING_LINK_COLOR: "#859900"
|
||||
// Solarized Green
|
||||
},
|
||||
comfy_base: {
|
||||
"fg-color": "#fdf6e3",
|
||||
// Base3
|
||||
"bg-color": "#002b36",
|
||||
// Base03
|
||||
"comfy-menu-bg": "#073642",
|
||||
// Base02
|
||||
"comfy-input-bg": "#002b36",
|
||||
// Base03
|
||||
"input-text": "#93a1a1",
|
||||
// Base1
|
||||
"descrip-text": "#586e75",
|
||||
// Base01
|
||||
"drag-text": "#839496",
|
||||
// Base0
|
||||
"error-text": "#dc322f",
|
||||
// Solarized Red
|
||||
"border-color": "#657b83",
|
||||
// Base00
|
||||
"tr-even-bg-color": "#002b36",
|
||||
"tr-odd-bg-color": "#073642",
|
||||
"content-bg": "#657b83",
|
||||
"content-fg": "#fdf6e3",
|
||||
"content-hover-bg": "#002b36",
|
||||
"content-hover-fg": "#fdf6e3"
|
||||
}
|
||||
}
|
||||
},
|
||||
arc: {
|
||||
id: "arc",
|
||||
name: "Arc",
|
||||
colors: {
|
||||
node_slot: {
|
||||
BOOLEAN: "",
|
||||
CLIP: "#eacb8b",
|
||||
CLIP_VISION: "#A8DADC",
|
||||
CLIP_VISION_OUTPUT: "#ad7452",
|
||||
CONDITIONING: "#cf876f",
|
||||
CONTROL_NET: "#00d78d",
|
||||
CONTROL_NET_WEIGHTS: "",
|
||||
FLOAT: "",
|
||||
GLIGEN: "",
|
||||
IMAGE: "#80a1c0",
|
||||
IMAGEUPLOAD: "",
|
||||
INT: "",
|
||||
LATENT: "#b38ead",
|
||||
LATENT_KEYFRAME: "",
|
||||
MASK: "#a3bd8d",
|
||||
MODEL: "#8978a7",
|
||||
SAMPLER: "",
|
||||
SIGMAS: "",
|
||||
STRING: "",
|
||||
STYLE_MODEL: "#C2FFAE",
|
||||
T2I_ADAPTER_WEIGHTS: "",
|
||||
TAESD: "#DCC274",
|
||||
TIMESTEP_KEYFRAME: "",
|
||||
UPSCALE_MODEL: "",
|
||||
VAE: "#be616b"
|
||||
},
|
||||
litegraph_base: {
|
||||
BACKGROUND_IMAGE: "",
|
||||
CLEAR_BACKGROUND_COLOR: "#2b2f38",
|
||||
NODE_TITLE_COLOR: "#b2b7bd",
|
||||
NODE_SELECTED_TITLE_COLOR: "#FFF",
|
||||
NODE_TEXT_SIZE: 14,
|
||||
NODE_TEXT_COLOR: "#AAA",
|
||||
NODE_SUBTEXT_SIZE: 12,
|
||||
NODE_DEFAULT_COLOR: "#2b2f38",
|
||||
NODE_DEFAULT_BGCOLOR: "#242730",
|
||||
NODE_DEFAULT_BOXCOLOR: "#6e7581",
|
||||
NODE_DEFAULT_SHAPE: "box",
|
||||
NODE_BOX_OUTLINE_COLOR: "#FFF",
|
||||
NODE_BYPASS_BGCOLOR: "#FF00FF",
|
||||
DEFAULT_SHADOW_COLOR: "rgba(0,0,0,0.5)",
|
||||
DEFAULT_GROUP_FONT: 22,
|
||||
WIDGET_BGCOLOR: "#2b2f38",
|
||||
WIDGET_OUTLINE_COLOR: "#6e7581",
|
||||
WIDGET_TEXT_COLOR: "#DDD",
|
||||
WIDGET_SECONDARY_TEXT_COLOR: "#b2b7bd",
|
||||
LINK_COLOR: "#9A9",
|
||||
EVENT_LINK_COLOR: "#A86",
|
||||
CONNECTING_LINK_COLOR: "#AFA"
|
||||
},
|
||||
comfy_base: {
|
||||
"fg-color": "#fff",
|
||||
"bg-color": "#2b2f38",
|
||||
"comfy-menu-bg": "#242730",
|
||||
"comfy-input-bg": "#2b2f38",
|
||||
"input-text": "#ddd",
|
||||
"descrip-text": "#b2b7bd",
|
||||
"drag-text": "#ccc",
|
||||
"error-text": "#ff4444",
|
||||
"border-color": "#6e7581",
|
||||
"tr-even-bg-color": "#2b2f38",
|
||||
"tr-odd-bg-color": "#242730",
|
||||
"content-bg": "#6e7581",
|
||||
"content-fg": "#fff",
|
||||
"content-hover-bg": "#2b2f38",
|
||||
"content-hover-fg": "#fff"
|
||||
}
|
||||
}
|
||||
},
|
||||
nord: {
|
||||
id: "nord",
|
||||
name: "Nord",
|
||||
colors: {
|
||||
node_slot: {
|
||||
BOOLEAN: "",
|
||||
CLIP: "#eacb8b",
|
||||
CLIP_VISION: "#A8DADC",
|
||||
CLIP_VISION_OUTPUT: "#ad7452",
|
||||
CONDITIONING: "#cf876f",
|
||||
CONTROL_NET: "#00d78d",
|
||||
CONTROL_NET_WEIGHTS: "",
|
||||
FLOAT: "",
|
||||
GLIGEN: "",
|
||||
IMAGE: "#80a1c0",
|
||||
IMAGEUPLOAD: "",
|
||||
INT: "",
|
||||
LATENT: "#b38ead",
|
||||
LATENT_KEYFRAME: "",
|
||||
MASK: "#a3bd8d",
|
||||
MODEL: "#8978a7",
|
||||
SAMPLER: "",
|
||||
SIGMAS: "",
|
||||
STRING: "",
|
||||
STYLE_MODEL: "#C2FFAE",
|
||||
T2I_ADAPTER_WEIGHTS: "",
|
||||
TAESD: "#DCC274",
|
||||
TIMESTEP_KEYFRAME: "",
|
||||
UPSCALE_MODEL: "",
|
||||
VAE: "#be616b"
|
||||
},
|
||||
litegraph_base: {
|
||||
BACKGROUND_IMAGE: "",
|
||||
CLEAR_BACKGROUND_COLOR: "#212732",
|
||||
NODE_TITLE_COLOR: "#999",
|
||||
NODE_SELECTED_TITLE_COLOR: "#e5eaf0",
|
||||
NODE_TEXT_SIZE: 14,
|
||||
NODE_TEXT_COLOR: "#bcc2c8",
|
||||
NODE_SUBTEXT_SIZE: 12,
|
||||
NODE_DEFAULT_COLOR: "#2e3440",
|
||||
NODE_DEFAULT_BGCOLOR: "#161b22",
|
||||
NODE_DEFAULT_BOXCOLOR: "#545d70",
|
||||
NODE_DEFAULT_SHAPE: "box",
|
||||
NODE_BOX_OUTLINE_COLOR: "#e5eaf0",
|
||||
NODE_BYPASS_BGCOLOR: "#FF00FF",
|
||||
DEFAULT_SHADOW_COLOR: "rgba(0,0,0,0.5)",
|
||||
DEFAULT_GROUP_FONT: 24,
|
||||
WIDGET_BGCOLOR: "#2e3440",
|
||||
WIDGET_OUTLINE_COLOR: "#545d70",
|
||||
WIDGET_TEXT_COLOR: "#bcc2c8",
|
||||
WIDGET_SECONDARY_TEXT_COLOR: "#999",
|
||||
LINK_COLOR: "#9A9",
|
||||
EVENT_LINK_COLOR: "#A86",
|
||||
CONNECTING_LINK_COLOR: "#AFA"
|
||||
},
|
||||
comfy_base: {
|
||||
"fg-color": "#e5eaf0",
|
||||
"bg-color": "#2e3440",
|
||||
"comfy-menu-bg": "#161b22",
|
||||
"comfy-input-bg": "#2e3440",
|
||||
"input-text": "#bcc2c8",
|
||||
"descrip-text": "#999",
|
||||
"drag-text": "#ccc",
|
||||
"error-text": "#ff4444",
|
||||
"border-color": "#545d70",
|
||||
"tr-even-bg-color": "#2e3440",
|
||||
"tr-odd-bg-color": "#161b22",
|
||||
"content-bg": "#545d70",
|
||||
"content-fg": "#e5eaf0",
|
||||
"content-hover-bg": "#2e3440",
|
||||
"content-hover-fg": "#e5eaf0"
|
||||
}
|
||||
}
|
||||
},
|
||||
github: {
|
||||
id: "github",
|
||||
name: "Github",
|
||||
colors: {
|
||||
node_slot: {
|
||||
BOOLEAN: "",
|
||||
CLIP: "#eacb8b",
|
||||
CLIP_VISION: "#A8DADC",
|
||||
CLIP_VISION_OUTPUT: "#ad7452",
|
||||
CONDITIONING: "#cf876f",
|
||||
CONTROL_NET: "#00d78d",
|
||||
CONTROL_NET_WEIGHTS: "",
|
||||
FLOAT: "",
|
||||
GLIGEN: "",
|
||||
IMAGE: "#80a1c0",
|
||||
IMAGEUPLOAD: "",
|
||||
INT: "",
|
||||
LATENT: "#b38ead",
|
||||
LATENT_KEYFRAME: "",
|
||||
MASK: "#a3bd8d",
|
||||
MODEL: "#8978a7",
|
||||
SAMPLER: "",
|
||||
SIGMAS: "",
|
||||
STRING: "",
|
||||
STYLE_MODEL: "#C2FFAE",
|
||||
T2I_ADAPTER_WEIGHTS: "",
|
||||
TAESD: "#DCC274",
|
||||
TIMESTEP_KEYFRAME: "",
|
||||
UPSCALE_MODEL: "",
|
||||
VAE: "#be616b"
|
||||
},
|
||||
litegraph_base: {
|
||||
BACKGROUND_IMAGE: "",
|
||||
CLEAR_BACKGROUND_COLOR: "#040506",
|
||||
NODE_TITLE_COLOR: "#999",
|
||||
NODE_SELECTED_TITLE_COLOR: "#e5eaf0",
|
||||
NODE_TEXT_SIZE: 14,
|
||||
NODE_TEXT_COLOR: "#bcc2c8",
|
||||
NODE_SUBTEXT_SIZE: 12,
|
||||
NODE_DEFAULT_COLOR: "#161b22",
|
||||
NODE_DEFAULT_BGCOLOR: "#13171d",
|
||||
NODE_DEFAULT_BOXCOLOR: "#30363d",
|
||||
NODE_DEFAULT_SHAPE: "box",
|
||||
NODE_BOX_OUTLINE_COLOR: "#e5eaf0",
|
||||
NODE_BYPASS_BGCOLOR: "#FF00FF",
|
||||
DEFAULT_SHADOW_COLOR: "rgba(0,0,0,0.5)",
|
||||
DEFAULT_GROUP_FONT: 24,
|
||||
WIDGET_BGCOLOR: "#161b22",
|
||||
WIDGET_OUTLINE_COLOR: "#30363d",
|
||||
WIDGET_TEXT_COLOR: "#bcc2c8",
|
||||
WIDGET_SECONDARY_TEXT_COLOR: "#999",
|
||||
LINK_COLOR: "#9A9",
|
||||
EVENT_LINK_COLOR: "#A86",
|
||||
CONNECTING_LINK_COLOR: "#AFA"
|
||||
},
|
||||
comfy_base: {
|
||||
"fg-color": "#e5eaf0",
|
||||
"bg-color": "#161b22",
|
||||
"comfy-menu-bg": "#13171d",
|
||||
"comfy-input-bg": "#161b22",
|
||||
"input-text": "#bcc2c8",
|
||||
"descrip-text": "#999",
|
||||
"drag-text": "#ccc",
|
||||
"error-text": "#ff4444",
|
||||
"border-color": "#30363d",
|
||||
"tr-even-bg-color": "#161b22",
|
||||
"tr-odd-bg-color": "#13171d",
|
||||
"content-bg": "#30363d",
|
||||
"content-fg": "#e5eaf0",
|
||||
"content-hover-bg": "#161b22",
|
||||
"content-hover-fg": "#e5eaf0"
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
const id = "Comfy.ColorPalette";
|
||||
const idCustomColorPalettes = "Comfy.CustomColorPalettes";
|
||||
const defaultColorPaletteId = "dark";
|
||||
const els = {
|
||||
select: null
|
||||
};
|
||||
const getCustomColorPalettes = /* @__PURE__ */ __name(() => {
|
||||
return app.ui.settings.getSettingValue(idCustomColorPalettes, {});
|
||||
}, "getCustomColorPalettes");
|
||||
const setCustomColorPalettes = /* @__PURE__ */ __name((customColorPalettes) => {
|
||||
return app.ui.settings.setSettingValue(
|
||||
idCustomColorPalettes,
|
||||
customColorPalettes
|
||||
);
|
||||
}, "setCustomColorPalettes");
|
||||
const defaultColorPalette = colorPalettes[defaultColorPaletteId];
|
||||
const getColorPalette = /* @__PURE__ */ __name((colorPaletteId) => {
|
||||
if (!colorPaletteId) {
|
||||
colorPaletteId = app.ui.settings.getSettingValue(id, defaultColorPaletteId);
|
||||
}
|
||||
if (colorPaletteId.startsWith("custom_")) {
|
||||
colorPaletteId = colorPaletteId.substr(7);
|
||||
let customColorPalettes = getCustomColorPalettes();
|
||||
if (customColorPalettes[colorPaletteId]) {
|
||||
return customColorPalettes[colorPaletteId];
|
||||
}
|
||||
}
|
||||
return colorPalettes[colorPaletteId];
|
||||
}, "getColorPalette");
|
||||
const setColorPalette = /* @__PURE__ */ __name((colorPaletteId) => {
|
||||
app.ui.settings.setSettingValue(id, colorPaletteId);
|
||||
}, "setColorPalette");
|
||||
app.registerExtension({
|
||||
name: id,
|
||||
init() {
|
||||
LGraphCanvas.prototype.updateBackground = function(image, clearBackgroundColor) {
|
||||
this._bg_img = new Image();
|
||||
this._bg_img.name = image;
|
||||
this._bg_img.src = image;
|
||||
this._bg_img.onload = () => {
|
||||
this.draw(true, true);
|
||||
};
|
||||
this.background_image = image;
|
||||
this.clear_background = true;
|
||||
this.clear_background_color = clearBackgroundColor;
|
||||
this._pattern = null;
|
||||
};
|
||||
},
|
||||
addCustomNodeDefs(node_defs) {
|
||||
const sortObjectKeys = /* @__PURE__ */ __name((unordered) => {
|
||||
return Object.keys(unordered).sort().reduce((obj, key) => {
|
||||
obj[key] = unordered[key];
|
||||
return obj;
|
||||
}, {});
|
||||
}, "sortObjectKeys");
|
||||
function getSlotTypes() {
|
||||
var types = [];
|
||||
const defs = node_defs;
|
||||
for (const nodeId in defs) {
|
||||
const nodeData = defs[nodeId];
|
||||
var inputs = nodeData["input"]["required"];
|
||||
if (nodeData["input"]["optional"] !== void 0) {
|
||||
inputs = Object.assign(
|
||||
{},
|
||||
nodeData["input"]["required"],
|
||||
nodeData["input"]["optional"]
|
||||
);
|
||||
}
|
||||
for (const inputName in inputs) {
|
||||
const inputData = inputs[inputName];
|
||||
const type = inputData[0];
|
||||
if (!Array.isArray(type)) {
|
||||
types.push(type);
|
||||
}
|
||||
}
|
||||
for (const o in nodeData["output"]) {
|
||||
const output = nodeData["output"][o];
|
||||
types.push(output);
|
||||
}
|
||||
}
|
||||
return types;
|
||||
}
|
||||
__name(getSlotTypes, "getSlotTypes");
|
||||
function completeColorPalette(colorPalette) {
|
||||
var types = getSlotTypes();
|
||||
for (const type of types) {
|
||||
if (!colorPalette.colors.node_slot[type]) {
|
||||
colorPalette.colors.node_slot[type] = "";
|
||||
}
|
||||
}
|
||||
colorPalette.colors.node_slot = sortObjectKeys(
|
||||
colorPalette.colors.node_slot
|
||||
);
|
||||
return colorPalette;
|
||||
}
|
||||
__name(completeColorPalette, "completeColorPalette");
|
||||
const getColorPaletteTemplate = /* @__PURE__ */ __name(async () => {
|
||||
let colorPalette = {
|
||||
id: "my_color_palette_unique_id",
|
||||
name: "My Color Palette",
|
||||
colors: {
|
||||
node_slot: {},
|
||||
litegraph_base: {},
|
||||
comfy_base: {}
|
||||
}
|
||||
};
|
||||
const defaultColorPalette2 = colorPalettes[defaultColorPaletteId];
|
||||
for (const key in defaultColorPalette2.colors.litegraph_base) {
|
||||
if (!colorPalette.colors.litegraph_base[key]) {
|
||||
colorPalette.colors.litegraph_base[key] = "";
|
||||
}
|
||||
}
|
||||
for (const key in defaultColorPalette2.colors.comfy_base) {
|
||||
if (!colorPalette.colors.comfy_base[key]) {
|
||||
colorPalette.colors.comfy_base[key] = "";
|
||||
}
|
||||
}
|
||||
return completeColorPalette(colorPalette);
|
||||
}, "getColorPaletteTemplate");
|
||||
const addCustomColorPalette = /* @__PURE__ */ __name(async (colorPalette) => {
|
||||
if (typeof colorPalette !== "object") {
|
||||
useToastStore().addAlert("Invalid color palette.");
|
||||
return;
|
||||
}
|
||||
if (!colorPalette.id) {
|
||||
useToastStore().addAlert("Color palette missing id.");
|
||||
return;
|
||||
}
|
||||
if (!colorPalette.name) {
|
||||
useToastStore().addAlert("Color palette missing name.");
|
||||
return;
|
||||
}
|
||||
if (!colorPalette.colors) {
|
||||
useToastStore().addAlert("Color palette missing colors.");
|
||||
return;
|
||||
}
|
||||
if (colorPalette.colors.node_slot && typeof colorPalette.colors.node_slot !== "object") {
|
||||
useToastStore().addAlert("Invalid color palette colors.node_slot.");
|
||||
return;
|
||||
}
|
||||
const customColorPalettes = getCustomColorPalettes();
|
||||
customColorPalettes[colorPalette.id] = colorPalette;
|
||||
setCustomColorPalettes(customColorPalettes);
|
||||
for (const option of els.select.childNodes) {
|
||||
if (option.value === "custom_" + colorPalette.id) {
|
||||
els.select.removeChild(option);
|
||||
}
|
||||
}
|
||||
els.select.append(
|
||||
$el("option", {
|
||||
textContent: colorPalette.name + " (custom)",
|
||||
value: "custom_" + colorPalette.id,
|
||||
selected: true
|
||||
})
|
||||
);
|
||||
setColorPalette("custom_" + colorPalette.id);
|
||||
await loadColorPalette(colorPalette);
|
||||
}, "addCustomColorPalette");
|
||||
const deleteCustomColorPalette = /* @__PURE__ */ __name(async (colorPaletteId) => {
|
||||
const customColorPalettes = getCustomColorPalettes();
|
||||
delete customColorPalettes[colorPaletteId];
|
||||
setCustomColorPalettes(customColorPalettes);
|
||||
for (const opt of els.select.childNodes) {
|
||||
const option = opt;
|
||||
if (option.value === defaultColorPaletteId) {
|
||||
option.selected = true;
|
||||
}
|
||||
if (option.value === "custom_" + colorPaletteId) {
|
||||
els.select.removeChild(option);
|
||||
}
|
||||
}
|
||||
setColorPalette(defaultColorPaletteId);
|
||||
await loadColorPalette(getColorPalette());
|
||||
}, "deleteCustomColorPalette");
|
||||
const loadColorPalette = /* @__PURE__ */ __name(async (colorPalette) => {
|
||||
colorPalette = await completeColorPalette(colorPalette);
|
||||
if (colorPalette.colors) {
|
||||
if (colorPalette.colors.node_slot) {
|
||||
Object.assign(
|
||||
app.canvas.default_connection_color_byType,
|
||||
colorPalette.colors.node_slot
|
||||
);
|
||||
Object.assign(
|
||||
LGraphCanvas.link_type_colors,
|
||||
colorPalette.colors.node_slot
|
||||
);
|
||||
}
|
||||
if (colorPalette.colors.litegraph_base) {
|
||||
app.canvas.node_title_color = colorPalette.colors.litegraph_base.NODE_TITLE_COLOR;
|
||||
app.canvas.default_link_color = colorPalette.colors.litegraph_base.LINK_COLOR;
|
||||
for (const key in colorPalette.colors.litegraph_base) {
|
||||
if (colorPalette.colors.litegraph_base.hasOwnProperty(key) && LiteGraph.hasOwnProperty(key)) {
|
||||
LiteGraph[key] = colorPalette.colors.litegraph_base[key];
|
||||
}
|
||||
}
|
||||
}
|
||||
if (colorPalette.colors.comfy_base) {
|
||||
const rootStyle = document.documentElement.style;
|
||||
for (const key in colorPalette.colors.comfy_base) {
|
||||
rootStyle.setProperty(
|
||||
"--" + key,
|
||||
colorPalette.colors.comfy_base[key]
|
||||
);
|
||||
}
|
||||
}
|
||||
if (colorPalette.colors.litegraph_base.NODE_BYPASS_BGCOLOR) {
|
||||
app.bypassBgColor = colorPalette.colors.litegraph_base.NODE_BYPASS_BGCOLOR;
|
||||
}
|
||||
app.canvas.draw(true, true);
|
||||
}
|
||||
}, "loadColorPalette");
|
||||
const fileInput = $el("input", {
|
||||
type: "file",
|
||||
accept: ".json",
|
||||
style: { display: "none" },
|
||||
parent: document.body,
|
||||
onchange: /* @__PURE__ */ __name(() => {
|
||||
const file = fileInput.files[0];
|
||||
if (file.type === "application/json" || file.name.endsWith(".json")) {
|
||||
const reader = new FileReader();
|
||||
reader.onload = async () => {
|
||||
await addCustomColorPalette(JSON.parse(reader.result));
|
||||
};
|
||||
reader.readAsText(file);
|
||||
}
|
||||
}, "onchange")
|
||||
});
|
||||
app.ui.settings.addSetting({
|
||||
id,
|
||||
category: ["Comfy", "ColorPalette"],
|
||||
name: "Color Palette",
|
||||
type: /* @__PURE__ */ __name((name, setter, value) => {
|
||||
const options = [
|
||||
...Object.values(colorPalettes).map(
|
||||
(c) => $el("option", {
|
||||
textContent: c.name,
|
||||
value: c.id,
|
||||
selected: c.id === value
|
||||
})
|
||||
),
|
||||
...Object.values(getCustomColorPalettes()).map(
|
||||
(c) => $el("option", {
|
||||
textContent: `${c.name} (custom)`,
|
||||
value: `custom_${c.id}`,
|
||||
selected: `custom_${c.id}` === value
|
||||
})
|
||||
)
|
||||
];
|
||||
els.select = $el(
|
||||
"select",
|
||||
{
|
||||
style: {
|
||||
marginBottom: "0.15rem",
|
||||
width: "100%"
|
||||
},
|
||||
onchange: /* @__PURE__ */ __name((e) => {
|
||||
setter(e.target.value);
|
||||
}, "onchange")
|
||||
},
|
||||
options
|
||||
);
|
||||
return $el("tr", [
|
||||
$el("td", [
|
||||
els.select,
|
||||
$el(
|
||||
"div",
|
||||
{
|
||||
style: {
|
||||
display: "grid",
|
||||
gap: "4px",
|
||||
gridAutoFlow: "column"
|
||||
}
|
||||
},
|
||||
[
|
||||
$el("input", {
|
||||
type: "button",
|
||||
value: "Export",
|
||||
onclick: /* @__PURE__ */ __name(async () => {
|
||||
const colorPaletteId = app.ui.settings.getSettingValue(
|
||||
id,
|
||||
defaultColorPaletteId
|
||||
);
|
||||
const colorPalette = await completeColorPalette(
|
||||
getColorPalette(colorPaletteId)
|
||||
);
|
||||
const json = JSON.stringify(colorPalette, null, 2);
|
||||
const blob = new Blob([json], { type: "application/json" });
|
||||
const url = URL.createObjectURL(blob);
|
||||
const a = $el("a", {
|
||||
href: url,
|
||||
download: colorPaletteId + ".json",
|
||||
style: { display: "none" },
|
||||
parent: document.body
|
||||
});
|
||||
a.click();
|
||||
setTimeout(function() {
|
||||
a.remove();
|
||||
window.URL.revokeObjectURL(url);
|
||||
}, 0);
|
||||
}, "onclick")
|
||||
}),
|
||||
$el("input", {
|
||||
type: "button",
|
||||
value: "Import",
|
||||
onclick: /* @__PURE__ */ __name(() => {
|
||||
fileInput.click();
|
||||
}, "onclick")
|
||||
}),
|
||||
$el("input", {
|
||||
type: "button",
|
||||
value: "Template",
|
||||
onclick: /* @__PURE__ */ __name(async () => {
|
||||
const colorPalette = await getColorPaletteTemplate();
|
||||
const json = JSON.stringify(colorPalette, null, 2);
|
||||
const blob = new Blob([json], { type: "application/json" });
|
||||
const url = URL.createObjectURL(blob);
|
||||
const a = $el("a", {
|
||||
href: url,
|
||||
download: "color_palette.json",
|
||||
style: { display: "none" },
|
||||
parent: document.body
|
||||
});
|
||||
a.click();
|
||||
setTimeout(function() {
|
||||
a.remove();
|
||||
window.URL.revokeObjectURL(url);
|
||||
}, 0);
|
||||
}, "onclick")
|
||||
}),
|
||||
$el("input", {
|
||||
type: "button",
|
||||
value: "Delete",
|
||||
onclick: /* @__PURE__ */ __name(async () => {
|
||||
let colorPaletteId = app.ui.settings.getSettingValue(
|
||||
id,
|
||||
defaultColorPaletteId
|
||||
);
|
||||
if (colorPalettes[colorPaletteId]) {
|
||||
useToastStore().addAlert(
|
||||
"You cannot delete a built-in color palette."
|
||||
);
|
||||
return;
|
||||
}
|
||||
if (colorPaletteId.startsWith("custom_")) {
|
||||
colorPaletteId = colorPaletteId.substr(7);
|
||||
}
|
||||
await deleteCustomColorPalette(colorPaletteId);
|
||||
}, "onclick")
|
||||
})
|
||||
]
|
||||
)
|
||||
])
|
||||
]);
|
||||
}, "type"),
|
||||
defaultValue: defaultColorPaletteId,
|
||||
async onChange(value) {
|
||||
if (!value) {
|
||||
return;
|
||||
}
|
||||
let palette = colorPalettes[value];
|
||||
if (palette) {
|
||||
await loadColorPalette(palette);
|
||||
} else if (value.startsWith("custom_")) {
|
||||
value = value.substr(7);
|
||||
let customColorPalettes = getCustomColorPalettes();
|
||||
if (customColorPalettes[value]) {
|
||||
palette = customColorPalettes[value];
|
||||
await loadColorPalette(customColorPalettes[value]);
|
||||
}
|
||||
}
|
||||
let { BACKGROUND_IMAGE, CLEAR_BACKGROUND_COLOR } = palette.colors.litegraph_base;
|
||||
if (BACKGROUND_IMAGE === void 0 || CLEAR_BACKGROUND_COLOR === void 0) {
|
||||
const base = colorPalettes["dark"].colors.litegraph_base;
|
||||
BACKGROUND_IMAGE = base.BACKGROUND_IMAGE;
|
||||
CLEAR_BACKGROUND_COLOR = base.CLEAR_BACKGROUND_COLOR;
|
||||
}
|
||||
app.canvas.updateBackground(BACKGROUND_IMAGE, CLEAR_BACKGROUND_COLOR);
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
window.comfyAPI = window.comfyAPI || {};
|
||||
window.comfyAPI.colorPalette = window.comfyAPI.colorPalette || {};
|
||||
window.comfyAPI.colorPalette.defaultColorPalette = defaultColorPalette;
|
||||
window.comfyAPI.colorPalette.getColorPalette = getColorPalette;
|
||||
export {
|
||||
defaultColorPalette as d,
|
||||
getColorPalette as g
|
||||
};
|
||||
//# sourceMappingURL=colorPalette-D5oi2-2V.js.map
|
1
web/assets/colorPalette-D5oi2-2V.js.map
generated
vendored
Normal file
1
web/assets/colorPalette-D5oi2-2V.js.map
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
1
web/assets/index-BDBCRrlL.js.map
generated
vendored
1
web/assets/index-BDBCRrlL.js.map
generated
vendored
File diff suppressed because one or more lines are too long
1233
web/assets/index-8NH3XvqK.css → web/assets/index-BHJGjcJh.css
generated
vendored
1233
web/assets/index-8NH3XvqK.css → web/assets/index-BHJGjcJh.css
generated
vendored
File diff suppressed because it is too large
Load Diff
1728
web/assets/index-BDBCRrlL.js → web/assets/index-BMC1ey-i.js
generated
vendored
1728
web/assets/index-BDBCRrlL.js → web/assets/index-BMC1ey-i.js
generated
vendored
File diff suppressed because it is too large
Load Diff
1
web/assets/index-BMC1ey-i.js.map
generated
vendored
Normal file
1
web/assets/index-BMC1ey-i.js.map
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
125296
web/assets/index-Drc_oD2f.js → web/assets/index-DGAbdBYF.js
generated
vendored
125296
web/assets/index-Drc_oD2f.js → web/assets/index-DGAbdBYF.js
generated
vendored
File diff suppressed because one or more lines are too long
1
web/assets/index-DGAbdBYF.js.map
generated
vendored
Normal file
1
web/assets/index-DGAbdBYF.js.map
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
1
web/assets/index-Drc_oD2f.js.map
generated
vendored
1
web/assets/index-Drc_oD2f.js.map
generated
vendored
File diff suppressed because one or more lines are too long
1
web/assets/userSelection-BM5u5JIA.js.map
generated
vendored
1
web/assets/userSelection-BM5u5JIA.js.map
generated
vendored
File diff suppressed because one or more lines are too long
34
web/assets/userSelection-CF-ymHZW.css → web/assets/userSelection-CmI-fOSC.css
generated
vendored
34
web/assets/userSelection-CF-ymHZW.css → web/assets/userSelection-CmI-fOSC.css
generated
vendored
@ -1,3 +1,37 @@
|
||||
.lds-ring {
|
||||
display: inline-block;
|
||||
position: relative;
|
||||
width: 1em;
|
||||
height: 1em;
|
||||
}
|
||||
.lds-ring div {
|
||||
box-sizing: border-box;
|
||||
display: block;
|
||||
position: absolute;
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
border: 0.15em solid #fff;
|
||||
border-radius: 50%;
|
||||
animation: lds-ring 1.2s cubic-bezier(0.5, 0, 0.5, 1) infinite;
|
||||
border-color: #fff transparent transparent transparent;
|
||||
}
|
||||
.lds-ring div:nth-child(1) {
|
||||
animation-delay: -0.45s;
|
||||
}
|
||||
.lds-ring div:nth-child(2) {
|
||||
animation-delay: -0.3s;
|
||||
}
|
||||
.lds-ring div:nth-child(3) {
|
||||
animation-delay: -0.15s;
|
||||
}
|
||||
@keyframes lds-ring {
|
||||
0% {
|
||||
transform: rotate(0deg);
|
||||
}
|
||||
100% {
|
||||
transform: rotate(360deg);
|
||||
}
|
||||
}
|
||||
.comfy-user-selection {
|
||||
width: 100vw;
|
||||
height: 100vh;
|
13
web/assets/userSelection-BM5u5JIA.js → web/assets/userSelection-Duxc-t_S.js
generated
vendored
13
web/assets/userSelection-BM5u5JIA.js → web/assets/userSelection-Duxc-t_S.js
generated
vendored
@ -1,6 +1,15 @@
|
||||
var __defProp = Object.defineProperty;
|
||||
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
||||
import { aY as createSpinner, aT as api, aN as $el } from "./index-Drc_oD2f.js";
|
||||
import { b4 as api, ca as $el } from "./index-DGAbdBYF.js";
|
||||
function createSpinner() {
|
||||
const div = document.createElement("div");
|
||||
div.innerHTML = `<div class="lds-ring"><div></div><div></div><div></div><div></div></div>`;
|
||||
return div.firstElementChild;
|
||||
}
|
||||
__name(createSpinner, "createSpinner");
|
||||
window.comfyAPI = window.comfyAPI || {};
|
||||
window.comfyAPI.spinner = window.comfyAPI.spinner || {};
|
||||
window.comfyAPI.spinner.createSpinner = createSpinner;
|
||||
class UserSelectionScreen {
|
||||
static {
|
||||
__name(this, "UserSelectionScreen");
|
||||
@ -117,4 +126,4 @@ window.comfyAPI.userSelection.UserSelectionScreen = UserSelectionScreen;
|
||||
export {
|
||||
UserSelectionScreen
|
||||
};
|
||||
//# sourceMappingURL=userSelection-BM5u5JIA.js.map
|
||||
//# sourceMappingURL=userSelection-Duxc-t_S.js.map
|
1
web/assets/userSelection-Duxc-t_S.js.map
generated
vendored
Normal file
1
web/assets/userSelection-Duxc-t_S.js.map
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
756
web/assets/widgetInputs-DdoWwzg5.js
generated
vendored
Normal file
756
web/assets/widgetInputs-DdoWwzg5.js
generated
vendored
Normal file
@ -0,0 +1,756 @@
|
||||
var __defProp = Object.defineProperty;
|
||||
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
||||
import { l as LGraphNode, k as app, cf as applyTextReplacements, ce as ComfyWidgets, ci as addValueControlWidgets, z as LiteGraph } from "./index-DGAbdBYF.js";
|
||||
const CONVERTED_TYPE = "converted-widget";
|
||||
const VALID_TYPES = [
|
||||
"STRING",
|
||||
"combo",
|
||||
"number",
|
||||
"toggle",
|
||||
"BOOLEAN",
|
||||
"text",
|
||||
"string"
|
||||
];
|
||||
const CONFIG = Symbol();
|
||||
const GET_CONFIG = Symbol();
|
||||
const TARGET = Symbol();
|
||||
const replacePropertyName = "Run widget replace on values";
|
||||
class PrimitiveNode extends LGraphNode {
|
||||
static {
|
||||
__name(this, "PrimitiveNode");
|
||||
}
|
||||
controlValues;
|
||||
lastType;
|
||||
static category;
|
||||
constructor(title) {
|
||||
super(title);
|
||||
this.addOutput("connect to widget input", "*");
|
||||
this.serialize_widgets = true;
|
||||
this.isVirtualNode = true;
|
||||
if (!this.properties || !(replacePropertyName in this.properties)) {
|
||||
this.addProperty(replacePropertyName, false, "boolean");
|
||||
}
|
||||
}
|
||||
applyToGraph(extraLinks = []) {
|
||||
if (!this.outputs[0].links?.length) return;
|
||||
function get_links(node) {
|
||||
let links2 = [];
|
||||
for (const l of node.outputs[0].links) {
|
||||
const linkInfo = app.graph.links[l];
|
||||
const n = node.graph.getNodeById(linkInfo.target_id);
|
||||
if (n.type == "Reroute") {
|
||||
links2 = links2.concat(get_links(n));
|
||||
} else {
|
||||
links2.push(l);
|
||||
}
|
||||
}
|
||||
return links2;
|
||||
}
|
||||
__name(get_links, "get_links");
|
||||
let links = [
|
||||
...get_links(this).map((l) => app.graph.links[l]),
|
||||
...extraLinks
|
||||
];
|
||||
let v = this.widgets?.[0].value;
|
||||
if (v && this.properties[replacePropertyName]) {
|
||||
v = applyTextReplacements(app, v);
|
||||
}
|
||||
for (const linkInfo of links) {
|
||||
const node = this.graph.getNodeById(linkInfo.target_id);
|
||||
const input = node.inputs[linkInfo.target_slot];
|
||||
let widget;
|
||||
if (input.widget[TARGET]) {
|
||||
widget = input.widget[TARGET];
|
||||
} else {
|
||||
const widgetName = input.widget.name;
|
||||
if (widgetName) {
|
||||
widget = node.widgets.find((w) => w.name === widgetName);
|
||||
}
|
||||
}
|
||||
if (widget) {
|
||||
widget.value = v;
|
||||
if (widget.callback) {
|
||||
widget.callback(
|
||||
widget.value,
|
||||
app.canvas,
|
||||
node,
|
||||
app.canvas.graph_mouse,
|
||||
{}
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
refreshComboInNode() {
|
||||
const widget = this.widgets?.[0];
|
||||
if (widget?.type === "combo") {
|
||||
widget.options.values = this.outputs[0].widget[GET_CONFIG]()[0];
|
||||
if (!widget.options.values.includes(widget.value)) {
|
||||
widget.value = widget.options.values[0];
|
||||
widget.callback(widget.value);
|
||||
}
|
||||
}
|
||||
}
|
||||
onAfterGraphConfigured() {
|
||||
if (this.outputs[0].links?.length && !this.widgets?.length) {
|
||||
if (!this.#onFirstConnection()) return;
|
||||
if (this.widgets) {
|
||||
for (let i = 0; i < this.widgets_values.length; i++) {
|
||||
const w = this.widgets[i];
|
||||
if (w) {
|
||||
w.value = this.widgets_values[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
this.#mergeWidgetConfig();
|
||||
}
|
||||
}
|
||||
onConnectionsChange(_, index, connected) {
|
||||
if (app.configuringGraph) {
|
||||
return;
|
||||
}
|
||||
const links = this.outputs[0].links;
|
||||
if (connected) {
|
||||
if (links?.length && !this.widgets?.length) {
|
||||
this.#onFirstConnection();
|
||||
}
|
||||
} else {
|
||||
this.#mergeWidgetConfig();
|
||||
if (!links?.length) {
|
||||
this.onLastDisconnect();
|
||||
}
|
||||
}
|
||||
}
|
||||
onConnectOutput(slot, type, input, target_node, target_slot) {
|
||||
if (!input.widget) {
|
||||
if (!(input.type in ComfyWidgets)) return false;
|
||||
}
|
||||
if (this.outputs[slot].links?.length) {
|
||||
const valid = this.#isValidConnection(input);
|
||||
if (valid) {
|
||||
this.applyToGraph([{ target_id: target_node.id, target_slot }]);
|
||||
}
|
||||
return valid;
|
||||
}
|
||||
}
|
||||
#onFirstConnection(recreating) {
|
||||
if (!this.outputs[0].links) {
|
||||
this.onLastDisconnect();
|
||||
return;
|
||||
}
|
||||
const linkId = this.outputs[0].links[0];
|
||||
const link = this.graph.links[linkId];
|
||||
if (!link) return;
|
||||
const theirNode = this.graph.getNodeById(link.target_id);
|
||||
if (!theirNode || !theirNode.inputs) return;
|
||||
const input = theirNode.inputs[link.target_slot];
|
||||
if (!input) return;
|
||||
let widget;
|
||||
if (!input.widget) {
|
||||
if (!(input.type in ComfyWidgets)) return;
|
||||
widget = { name: input.name, [GET_CONFIG]: () => [input.type, {}] };
|
||||
} else {
|
||||
widget = input.widget;
|
||||
}
|
||||
const config = widget[GET_CONFIG]?.();
|
||||
if (!config) return;
|
||||
const { type } = getWidgetType(config);
|
||||
this.outputs[0].type = type;
|
||||
this.outputs[0].name = type;
|
||||
this.outputs[0].widget = widget;
|
||||
this.#createWidget(
|
||||
widget[CONFIG] ?? config,
|
||||
theirNode,
|
||||
widget.name,
|
||||
recreating,
|
||||
widget[TARGET]
|
||||
);
|
||||
}
|
||||
#createWidget(inputData, node, widgetName, recreating, targetWidget) {
|
||||
let type = inputData[0];
|
||||
if (type instanceof Array) {
|
||||
type = "COMBO";
|
||||
}
|
||||
const size = this.size;
|
||||
let widget;
|
||||
if (type in ComfyWidgets) {
|
||||
widget = (ComfyWidgets[type](this, "value", inputData, app) || {}).widget;
|
||||
} else {
|
||||
widget = this.addWidget(type, "value", null, () => {
|
||||
}, {});
|
||||
}
|
||||
if (targetWidget) {
|
||||
widget.value = targetWidget.value;
|
||||
} else if (node?.widgets && widget) {
|
||||
const theirWidget = node.widgets.find((w) => w.name === widgetName);
|
||||
if (theirWidget) {
|
||||
widget.value = theirWidget.value;
|
||||
}
|
||||
}
|
||||
if (!inputData?.[1]?.control_after_generate && (widget.type === "number" || widget.type === "combo")) {
|
||||
let control_value = this.widgets_values?.[1];
|
||||
if (!control_value) {
|
||||
control_value = "fixed";
|
||||
}
|
||||
addValueControlWidgets(
|
||||
this,
|
||||
widget,
|
||||
control_value,
|
||||
void 0,
|
||||
inputData
|
||||
);
|
||||
let filter = this.widgets_values?.[2];
|
||||
if (filter && this.widgets.length === 3) {
|
||||
this.widgets[2].value = filter;
|
||||
}
|
||||
}
|
||||
const controlValues = this.controlValues;
|
||||
if (this.lastType === this.widgets[0].type && controlValues?.length === this.widgets.length - 1) {
|
||||
for (let i = 0; i < controlValues.length; i++) {
|
||||
this.widgets[i + 1].value = controlValues[i];
|
||||
}
|
||||
}
|
||||
const callback = widget.callback;
|
||||
const self = this;
|
||||
widget.callback = function() {
|
||||
const r = callback ? callback.apply(this, arguments) : void 0;
|
||||
self.applyToGraph();
|
||||
return r;
|
||||
};
|
||||
this.size = [
|
||||
Math.max(this.size[0], size[0]),
|
||||
Math.max(this.size[1], size[1])
|
||||
];
|
||||
if (!recreating) {
|
||||
const sz = this.computeSize();
|
||||
if (this.size[0] < sz[0]) {
|
||||
this.size[0] = sz[0];
|
||||
}
|
||||
if (this.size[1] < sz[1]) {
|
||||
this.size[1] = sz[1];
|
||||
}
|
||||
requestAnimationFrame(() => {
|
||||
if (this.onResize) {
|
||||
this.onResize(this.size);
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
recreateWidget() {
|
||||
const values = this.widgets?.map((w) => w.value);
|
||||
this.#removeWidgets();
|
||||
this.#onFirstConnection(true);
|
||||
if (values?.length) {
|
||||
for (let i = 0; i < this.widgets?.length; i++)
|
||||
this.widgets[i].value = values[i];
|
||||
}
|
||||
return this.widgets?.[0];
|
||||
}
|
||||
#mergeWidgetConfig() {
|
||||
const output = this.outputs[0];
|
||||
const links = output.links;
|
||||
const hasConfig = !!output.widget[CONFIG];
|
||||
if (hasConfig) {
|
||||
delete output.widget[CONFIG];
|
||||
}
|
||||
if (links?.length < 2 && hasConfig) {
|
||||
if (links.length) {
|
||||
this.recreateWidget();
|
||||
}
|
||||
return;
|
||||
}
|
||||
const config1 = output.widget[GET_CONFIG]();
|
||||
const isNumber = config1[0] === "INT" || config1[0] === "FLOAT";
|
||||
if (!isNumber) return;
|
||||
for (const linkId of links) {
|
||||
const link = app.graph.links[linkId];
|
||||
if (!link) continue;
|
||||
const theirNode = app.graph.getNodeById(link.target_id);
|
||||
const theirInput = theirNode.inputs[link.target_slot];
|
||||
this.#isValidConnection(theirInput, hasConfig);
|
||||
}
|
||||
}
|
||||
isValidWidgetLink(originSlot, targetNode, targetWidget) {
|
||||
const config2 = getConfig.call(targetNode, targetWidget.name) ?? [
|
||||
targetWidget.type,
|
||||
targetWidget.options || {}
|
||||
];
|
||||
if (!isConvertibleWidget(targetWidget, config2)) return false;
|
||||
const output = this.outputs[originSlot];
|
||||
if (!(output.widget?.[CONFIG] ?? output.widget?.[GET_CONFIG]())) {
|
||||
return true;
|
||||
}
|
||||
return !!mergeIfValid.call(this, output, config2);
|
||||
}
|
||||
#isValidConnection(input, forceUpdate) {
|
||||
const output = this.outputs[0];
|
||||
const config2 = input.widget[GET_CONFIG]();
|
||||
return !!mergeIfValid.call(
|
||||
this,
|
||||
output,
|
||||
config2,
|
||||
forceUpdate,
|
||||
this.recreateWidget
|
||||
);
|
||||
}
|
||||
#removeWidgets() {
|
||||
if (this.widgets) {
|
||||
for (const w of this.widgets) {
|
||||
if (w.onRemove) {
|
||||
w.onRemove();
|
||||
}
|
||||
}
|
||||
this.controlValues = [];
|
||||
this.lastType = this.widgets[0]?.type;
|
||||
for (let i = 1; i < this.widgets.length; i++) {
|
||||
this.controlValues.push(this.widgets[i].value);
|
||||
}
|
||||
setTimeout(() => {
|
||||
delete this.lastType;
|
||||
delete this.controlValues;
|
||||
}, 15);
|
||||
this.widgets.length = 0;
|
||||
}
|
||||
}
|
||||
onLastDisconnect() {
|
||||
this.outputs[0].type = "*";
|
||||
this.outputs[0].name = "connect to widget input";
|
||||
delete this.outputs[0].widget;
|
||||
this.#removeWidgets();
|
||||
}
|
||||
}
|
||||
function getWidgetConfig(slot) {
|
||||
return slot.widget[CONFIG] ?? slot.widget[GET_CONFIG]();
|
||||
}
|
||||
__name(getWidgetConfig, "getWidgetConfig");
|
||||
function getConfig(widgetName) {
|
||||
const { nodeData } = this.constructor;
|
||||
return nodeData?.input?.required?.[widgetName] ?? nodeData?.input?.optional?.[widgetName];
|
||||
}
|
||||
__name(getConfig, "getConfig");
|
||||
function isConvertibleWidget(widget, config) {
|
||||
return (VALID_TYPES.includes(widget.type) || VALID_TYPES.includes(config[0])) && !widget.options?.forceInput;
|
||||
}
|
||||
__name(isConvertibleWidget, "isConvertibleWidget");
|
||||
function hideWidget(node, widget, suffix = "") {
|
||||
if (widget.type?.startsWith(CONVERTED_TYPE)) return;
|
||||
widget.origType = widget.type;
|
||||
widget.origComputeSize = widget.computeSize;
|
||||
widget.origSerializeValue = widget.serializeValue;
|
||||
widget.computeSize = () => [0, -4];
|
||||
widget.type = CONVERTED_TYPE + suffix;
|
||||
widget.serializeValue = () => {
|
||||
if (!node.inputs) {
|
||||
return void 0;
|
||||
}
|
||||
let node_input = node.inputs.find((i) => i.widget?.name === widget.name);
|
||||
if (!node_input || !node_input.link) {
|
||||
return void 0;
|
||||
}
|
||||
return widget.origSerializeValue ? widget.origSerializeValue() : widget.value;
|
||||
};
|
||||
if (widget.linkedWidgets) {
|
||||
for (const w of widget.linkedWidgets) {
|
||||
hideWidget(node, w, ":" + widget.name);
|
||||
}
|
||||
}
|
||||
}
|
||||
__name(hideWidget, "hideWidget");
|
||||
function showWidget(widget) {
|
||||
widget.type = widget.origType;
|
||||
widget.computeSize = widget.origComputeSize;
|
||||
widget.serializeValue = widget.origSerializeValue;
|
||||
delete widget.origType;
|
||||
delete widget.origComputeSize;
|
||||
delete widget.origSerializeValue;
|
||||
if (widget.linkedWidgets) {
|
||||
for (const w of widget.linkedWidgets) {
|
||||
showWidget(w);
|
||||
}
|
||||
}
|
||||
}
|
||||
__name(showWidget, "showWidget");
|
||||
function convertToInput(node, widget, config) {
|
||||
hideWidget(node, widget);
|
||||
const { type } = getWidgetType(config);
|
||||
const sz = node.size;
|
||||
const inputIsOptional = !!widget.options?.inputIsOptional;
|
||||
const input = node.addInput(widget.name, type, {
|
||||
widget: { name: widget.name, [GET_CONFIG]: () => config },
|
||||
...inputIsOptional ? { shape: LiteGraph.SlotShape.HollowCircle } : {}
|
||||
});
|
||||
for (const widget2 of node.widgets) {
|
||||
widget2.last_y += LiteGraph.NODE_SLOT_HEIGHT;
|
||||
}
|
||||
node.setSize([Math.max(sz[0], node.size[0]), Math.max(sz[1], node.size[1])]);
|
||||
return input;
|
||||
}
|
||||
__name(convertToInput, "convertToInput");
|
||||
function convertToWidget(node, widget) {
|
||||
showWidget(widget);
|
||||
const sz = node.size;
|
||||
node.removeInput(node.inputs.findIndex((i) => i.widget?.name === widget.name));
|
||||
for (const widget2 of node.widgets) {
|
||||
widget2.last_y -= LiteGraph.NODE_SLOT_HEIGHT;
|
||||
}
|
||||
node.setSize([Math.max(sz[0], node.size[0]), Math.max(sz[1], node.size[1])]);
|
||||
}
|
||||
__name(convertToWidget, "convertToWidget");
|
||||
function getWidgetType(config) {
|
||||
let type = config[0];
|
||||
if (type instanceof Array) {
|
||||
type = "COMBO";
|
||||
}
|
||||
return { type };
|
||||
}
|
||||
__name(getWidgetType, "getWidgetType");
|
||||
function isValidCombo(combo, obj) {
|
||||
if (!(obj instanceof Array)) {
|
||||
console.log(`connection rejected: tried to connect combo to ${obj}`);
|
||||
return false;
|
||||
}
|
||||
if (combo.length !== obj.length) {
|
||||
console.log(`connection rejected: combo lists dont match`);
|
||||
return false;
|
||||
}
|
||||
if (combo.find((v, i) => obj[i] !== v)) {
|
||||
console.log(`connection rejected: combo lists dont match`);
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
__name(isValidCombo, "isValidCombo");
|
||||
function isPrimitiveNode(node) {
|
||||
return node.type === "PrimitiveNode";
|
||||
}
|
||||
__name(isPrimitiveNode, "isPrimitiveNode");
|
||||
function setWidgetConfig(slot, config, target) {
|
||||
if (!slot.widget) return;
|
||||
if (config) {
|
||||
slot.widget[GET_CONFIG] = () => config;
|
||||
slot.widget[TARGET] = target;
|
||||
} else {
|
||||
delete slot.widget;
|
||||
}
|
||||
if (slot.link) {
|
||||
const link = app.graph.links[slot.link];
|
||||
if (link) {
|
||||
const originNode = app.graph.getNodeById(link.origin_id);
|
||||
if (isPrimitiveNode(originNode)) {
|
||||
if (config) {
|
||||
originNode.recreateWidget();
|
||||
} else if (!app.configuringGraph) {
|
||||
originNode.disconnectOutput(0);
|
||||
originNode.onLastDisconnect();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
__name(setWidgetConfig, "setWidgetConfig");
|
||||
function mergeIfValid(output, config2, forceUpdate, recreateWidget, config1) {
|
||||
if (!config1) {
|
||||
config1 = output.widget[CONFIG] ?? output.widget[GET_CONFIG]();
|
||||
}
|
||||
if (config1[0] instanceof Array) {
|
||||
if (!isValidCombo(config1[0], config2[0])) return;
|
||||
} else if (config1[0] !== config2[0]) {
|
||||
console.log(`connection rejected: types dont match`, config1[0], config2[0]);
|
||||
return;
|
||||
}
|
||||
const keys = /* @__PURE__ */ new Set([
|
||||
...Object.keys(config1[1] ?? {}),
|
||||
...Object.keys(config2[1] ?? {})
|
||||
]);
|
||||
let customConfig;
|
||||
const getCustomConfig = /* @__PURE__ */ __name(() => {
|
||||
if (!customConfig) {
|
||||
if (typeof structuredClone === "undefined") {
|
||||
customConfig = JSON.parse(JSON.stringify(config1[1] ?? {}));
|
||||
} else {
|
||||
customConfig = structuredClone(config1[1] ?? {});
|
||||
}
|
||||
}
|
||||
return customConfig;
|
||||
}, "getCustomConfig");
|
||||
const isNumber = config1[0] === "INT" || config1[0] === "FLOAT";
|
||||
for (const k of keys.values()) {
|
||||
if (k !== "default" && k !== "forceInput" && k !== "defaultInput" && k !== "control_after_generate" && k !== "multiline" && k !== "tooltip") {
|
||||
let v1 = config1[1][k];
|
||||
let v2 = config2[1]?.[k];
|
||||
if (v1 === v2 || !v1 && !v2) continue;
|
||||
if (isNumber) {
|
||||
if (k === "min") {
|
||||
const theirMax = config2[1]?.["max"];
|
||||
if (theirMax != null && v1 > theirMax) {
|
||||
console.log("connection rejected: min > max", v1, theirMax);
|
||||
return;
|
||||
}
|
||||
getCustomConfig()[k] = v1 == null ? v2 : v2 == null ? v1 : Math.max(v1, v2);
|
||||
continue;
|
||||
} else if (k === "max") {
|
||||
const theirMin = config2[1]?.["min"];
|
||||
if (theirMin != null && v1 < theirMin) {
|
||||
console.log("connection rejected: max < min", v1, theirMin);
|
||||
return;
|
||||
}
|
||||
getCustomConfig()[k] = v1 == null ? v2 : v2 == null ? v1 : Math.min(v1, v2);
|
||||
continue;
|
||||
} else if (k === "step") {
|
||||
let step;
|
||||
if (v1 == null) {
|
||||
step = v2;
|
||||
} else if (v2 == null) {
|
||||
step = v1;
|
||||
} else {
|
||||
if (v1 < v2) {
|
||||
const a = v2;
|
||||
v2 = v1;
|
||||
v1 = a;
|
||||
}
|
||||
if (v1 % v2) {
|
||||
console.log(
|
||||
"connection rejected: steps not divisible",
|
||||
"current:",
|
||||
v1,
|
||||
"new:",
|
||||
v2
|
||||
);
|
||||
return;
|
||||
}
|
||||
step = v1;
|
||||
}
|
||||
getCustomConfig()[k] = step;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
console.log(`connection rejected: config ${k} values dont match`, v1, v2);
|
||||
return;
|
||||
}
|
||||
}
|
||||
if (customConfig || forceUpdate) {
|
||||
if (customConfig) {
|
||||
output.widget[CONFIG] = [config1[0], customConfig];
|
||||
}
|
||||
const widget = recreateWidget?.call(this);
|
||||
if (widget) {
|
||||
const min = widget.options.min;
|
||||
const max = widget.options.max;
|
||||
if (min != null && widget.value < min) widget.value = min;
|
||||
if (max != null && widget.value > max) widget.value = max;
|
||||
widget.callback(widget.value);
|
||||
}
|
||||
}
|
||||
return { customConfig };
|
||||
}
|
||||
__name(mergeIfValid, "mergeIfValid");
|
||||
let useConversionSubmenusSetting;
|
||||
app.registerExtension({
|
||||
name: "Comfy.WidgetInputs",
|
||||
init() {
|
||||
useConversionSubmenusSetting = app.ui.settings.addSetting({
|
||||
id: "Comfy.NodeInputConversionSubmenus",
|
||||
name: "In the node context menu, place the entries that convert between input/widget in sub-menus.",
|
||||
type: "boolean",
|
||||
defaultValue: true
|
||||
});
|
||||
},
|
||||
async beforeRegisterNodeDef(nodeType, nodeData, app2) {
|
||||
const origGetExtraMenuOptions = nodeType.prototype.getExtraMenuOptions;
|
||||
nodeType.prototype.convertWidgetToInput = function(widget) {
|
||||
const config = getConfig.call(this, widget.name) ?? [
|
||||
widget.type,
|
||||
widget.options || {}
|
||||
];
|
||||
if (!isConvertibleWidget(widget, config)) return false;
|
||||
if (widget.type?.startsWith(CONVERTED_TYPE)) return false;
|
||||
convertToInput(this, widget, config);
|
||||
return true;
|
||||
};
|
||||
nodeType.prototype.getExtraMenuOptions = function(_, options) {
|
||||
const r = origGetExtraMenuOptions ? origGetExtraMenuOptions.apply(this, arguments) : void 0;
|
||||
if (this.widgets) {
|
||||
let toInput = [];
|
||||
let toWidget = [];
|
||||
for (const w of this.widgets) {
|
||||
if (w.options?.forceInput) {
|
||||
continue;
|
||||
}
|
||||
if (w.type === CONVERTED_TYPE) {
|
||||
toWidget.push({
|
||||
content: `Convert ${w.name} to widget`,
|
||||
callback: /* @__PURE__ */ __name(() => convertToWidget(this, w), "callback")
|
||||
});
|
||||
} else {
|
||||
const config = getConfig.call(this, w.name) ?? [
|
||||
w.type,
|
||||
w.options || {}
|
||||
];
|
||||
if (isConvertibleWidget(w, config)) {
|
||||
toInput.push({
|
||||
content: `Convert ${w.name} to input`,
|
||||
callback: /* @__PURE__ */ __name(() => convertToInput(this, w, config), "callback")
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
if (toInput.length) {
|
||||
if (useConversionSubmenusSetting.value) {
|
||||
options.push({
|
||||
content: "Convert Widget to Input",
|
||||
submenu: {
|
||||
options: toInput
|
||||
}
|
||||
});
|
||||
} else {
|
||||
options.push(...toInput, null);
|
||||
}
|
||||
}
|
||||
if (toWidget.length) {
|
||||
if (useConversionSubmenusSetting.value) {
|
||||
options.push({
|
||||
content: "Convert Input to Widget",
|
||||
submenu: {
|
||||
options: toWidget
|
||||
}
|
||||
});
|
||||
} else {
|
||||
options.push(...toWidget, null);
|
||||
}
|
||||
}
|
||||
}
|
||||
return r;
|
||||
};
|
||||
nodeType.prototype.onGraphConfigured = function() {
|
||||
if (!this.inputs) return;
|
||||
this.widgets ??= [];
|
||||
for (const input of this.inputs) {
|
||||
if (input.widget) {
|
||||
if (!input.widget[GET_CONFIG]) {
|
||||
input.widget[GET_CONFIG] = () => getConfig.call(this, input.widget.name);
|
||||
}
|
||||
if (input.widget.config) {
|
||||
if (input.widget.config[0] instanceof Array) {
|
||||
input.type = "COMBO";
|
||||
const link = app2.graph.links[input.link];
|
||||
if (link) {
|
||||
link.type = input.type;
|
||||
}
|
||||
}
|
||||
delete input.widget.config;
|
||||
}
|
||||
const w = this.widgets.find((w2) => w2.name === input.widget.name);
|
||||
if (w) {
|
||||
hideWidget(this, w);
|
||||
} else {
|
||||
convertToWidget(this, input);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
const origOnNodeCreated = nodeType.prototype.onNodeCreated;
|
||||
nodeType.prototype.onNodeCreated = function() {
|
||||
const r = origOnNodeCreated ? origOnNodeCreated.apply(this) : void 0;
|
||||
if (!app2.configuringGraph && this.widgets) {
|
||||
for (const w of this.widgets) {
|
||||
if (w?.options?.forceInput || w?.options?.defaultInput) {
|
||||
const config = getConfig.call(this, w.name) ?? [
|
||||
w.type,
|
||||
w.options || {}
|
||||
];
|
||||
convertToInput(this, w, config);
|
||||
}
|
||||
}
|
||||
}
|
||||
return r;
|
||||
};
|
||||
const origOnConfigure = nodeType.prototype.onConfigure;
|
||||
nodeType.prototype.onConfigure = function() {
|
||||
const r = origOnConfigure ? origOnConfigure.apply(this, arguments) : void 0;
|
||||
if (!app2.configuringGraph && this.inputs) {
|
||||
for (const input of this.inputs) {
|
||||
if (input.widget && !input.widget[GET_CONFIG]) {
|
||||
input.widget[GET_CONFIG] = () => getConfig.call(this, input.widget.name);
|
||||
const w = this.widgets.find((w2) => w2.name === input.widget.name);
|
||||
if (w) {
|
||||
hideWidget(this, w);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return r;
|
||||
};
|
||||
function isNodeAtPos(pos) {
|
||||
for (const n of app2.graph.nodes) {
|
||||
if (n.pos[0] === pos[0] && n.pos[1] === pos[1]) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
__name(isNodeAtPos, "isNodeAtPos");
|
||||
const origOnInputDblClick = nodeType.prototype.onInputDblClick;
|
||||
const ignoreDblClick = Symbol();
|
||||
nodeType.prototype.onInputDblClick = function(slot) {
|
||||
const r = origOnInputDblClick ? origOnInputDblClick.apply(this, arguments) : void 0;
|
||||
const input = this.inputs[slot];
|
||||
if (!input.widget || !input[ignoreDblClick]) {
|
||||
if (!(input.type in ComfyWidgets) && !(input.widget[GET_CONFIG]?.()?.[0] instanceof Array)) {
|
||||
return r;
|
||||
}
|
||||
}
|
||||
const node = LiteGraph.createNode("PrimitiveNode");
|
||||
app2.graph.add(node);
|
||||
const pos = [
|
||||
this.pos[0] - node.size[0] - 30,
|
||||
this.pos[1]
|
||||
];
|
||||
while (isNodeAtPos(pos)) {
|
||||
pos[1] += LiteGraph.NODE_TITLE_HEIGHT;
|
||||
}
|
||||
node.pos = pos;
|
||||
node.connect(0, this, slot);
|
||||
node.title = input.name;
|
||||
input[ignoreDblClick] = true;
|
||||
setTimeout(() => {
|
||||
delete input[ignoreDblClick];
|
||||
}, 300);
|
||||
return r;
|
||||
};
|
||||
const onConnectInput = nodeType.prototype.onConnectInput;
|
||||
nodeType.prototype.onConnectInput = function(targetSlot, type, output, originNode, originSlot) {
|
||||
const v = onConnectInput?.(this, arguments);
|
||||
if (type !== "COMBO") return v;
|
||||
if (originNode.outputs[originSlot].widget) return v;
|
||||
const targetCombo = this.inputs[targetSlot].widget?.[GET_CONFIG]?.()?.[0];
|
||||
if (!targetCombo || !(targetCombo instanceof Array)) return v;
|
||||
const originConfig = originNode.constructor?.nodeData?.output?.[originSlot];
|
||||
if (!originConfig || !isValidCombo(targetCombo, originConfig)) {
|
||||
return false;
|
||||
}
|
||||
return v;
|
||||
};
|
||||
},
|
||||
registerCustomNodes() {
|
||||
LiteGraph.registerNodeType(
|
||||
"PrimitiveNode",
|
||||
Object.assign(PrimitiveNode, {
|
||||
title: "Primitive"
|
||||
})
|
||||
);
|
||||
PrimitiveNode.category = "utils";
|
||||
}
|
||||
});
|
||||
window.comfyAPI = window.comfyAPI || {};
|
||||
window.comfyAPI.widgetInputs = window.comfyAPI.widgetInputs || {};
|
||||
window.comfyAPI.widgetInputs.getWidgetConfig = getWidgetConfig;
|
||||
window.comfyAPI.widgetInputs.convertToInput = convertToInput;
|
||||
window.comfyAPI.widgetInputs.setWidgetConfig = setWidgetConfig;
|
||||
window.comfyAPI.widgetInputs.mergeIfValid = mergeIfValid;
|
||||
export {
|
||||
convertToInput,
|
||||
getWidgetConfig,
|
||||
mergeIfValid,
|
||||
setWidgetConfig
|
||||
};
|
||||
//# sourceMappingURL=widgetInputs-DdoWwzg5.js.map
|
1
web/assets/widgetInputs-DdoWwzg5.js.map
generated
vendored
Normal file
1
web/assets/widgetInputs-DdoWwzg5.js.map
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
1
web/extensions/core/widgetInputs.js
vendored
1
web/extensions/core/widgetInputs.js
vendored
@ -1,4 +1,5 @@
|
||||
// Shim for extensions/core/widgetInputs.ts
|
||||
export const getWidgetConfig = window.comfyAPI.widgetInputs.getWidgetConfig;
|
||||
export const convertToInput = window.comfyAPI.widgetInputs.convertToInput;
|
||||
export const setWidgetConfig = window.comfyAPI.widgetInputs.setWidgetConfig;
|
||||
export const mergeIfValid = window.comfyAPI.widgetInputs.mergeIfValid;
|
||||
|
14
web/index.html
vendored
14
web/index.html
vendored
@ -4,20 +4,12 @@
|
||||
<meta charset="UTF-8">
|
||||
<title>ComfyUI</title>
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no">
|
||||
<!-- Browser Test Fonts -->
|
||||
<!-- <link href="https://fonts.googleapis.com/css2?family=Roboto+Mono:ital,wght@0,100..700;1,100..700&family=Roboto:ital,wght@0,100;0,300;0,400;0,500;0,700;0,900;1,100;1,300;1,400;1,500;1,700;1,900&display=swap" rel="stylesheet">
|
||||
<link href="https://fonts.googleapis.com/css2?family=Noto+Color+Emoji&family=Roboto+Mono:ital,wght@0,100..700;1,100..700&family=Roboto:ital,wght@0,100;0,300;0,400;0,500;0,700;0,900;1,100;1,300;1,400;1,500;1,700;1,900&display=swap" rel="stylesheet">
|
||||
<style>
|
||||
* {
|
||||
font-family: 'Roboto Mono', 'Noto Color Emoji';
|
||||
}
|
||||
</style> -->
|
||||
<link rel="stylesheet" type="text/css" href="user.css" />
|
||||
<link rel="stylesheet" type="text/css" href="materialdesignicons.min.css" />
|
||||
<script type="module" crossorigin src="./assets/index-Drc_oD2f.js"></script>
|
||||
<link rel="stylesheet" crossorigin href="./assets/index-8NH3XvqK.css">
|
||||
<script type="module" crossorigin src="./assets/index-DGAbdBYF.js"></script>
|
||||
<link rel="stylesheet" crossorigin href="./assets/index-BHJGjcJh.css">
|
||||
</head>
|
||||
<body class="litegraph">
|
||||
<body class="litegraph grid">
|
||||
<div id="vue-app"></div>
|
||||
<div id="comfy-user-selection" class="comfy-user-selection" style="display: none;">
|
||||
<main class="comfy-user-selection-inner">
|
||||
|
1
web/scripts/changeTracker.js
vendored
1
web/scripts/changeTracker.js
vendored
@ -1,2 +1,3 @@
|
||||
// Shim for scripts/changeTracker.ts
|
||||
export const ChangeTracker = window.comfyAPI.changeTracker.ChangeTracker;
|
||||
export const globalTracker = window.comfyAPI.changeTracker.globalTracker;
|
||||
|
2
web/scripts/ui/menu/interruptButton.js
vendored
2
web/scripts/ui/menu/interruptButton.js
vendored
@ -1,2 +0,0 @@
|
||||
// Shim for scripts/ui/menu/interruptButton.ts
|
||||
export const getInterruptButton = window.comfyAPI.interruptButton.getInterruptButton;
|
2
web/scripts/ui/menu/queueButton.js
vendored
2
web/scripts/ui/menu/queueButton.js
vendored
@ -1,2 +0,0 @@
|
||||
// Shim for scripts/ui/menu/queueButton.ts
|
||||
export const ComfyQueueButton = window.comfyAPI.queueButton.ComfyQueueButton;
|
2
web/scripts/ui/menu/queueOptions.js
vendored
2
web/scripts/ui/menu/queueOptions.js
vendored
@ -1,2 +0,0 @@
|
||||
// Shim for scripts/ui/menu/queueOptions.ts
|
||||
export const ComfyQueueOptions = window.comfyAPI.queueOptions.ComfyQueueOptions;
|
3
web/scripts/ui/menu/workflows.js
vendored
3
web/scripts/ui/menu/workflows.js
vendored
@ -1,3 +0,0 @@
|
||||
// Shim for scripts/ui/menu/workflows.ts
|
||||
export const ComfyWorkflowsMenu = window.comfyAPI.workflows.ComfyWorkflowsMenu;
|
||||
export const ComfyWorkflowsContent = window.comfyAPI.workflows.ComfyWorkflowsContent;
|
BIN
web/templates/default.jpg
vendored
Normal file
BIN
web/templates/default.jpg
vendored
Normal file
Binary file not shown.
After Width: | Height: | Size: 20 KiB |
356
web/templates/default.json
vendored
Normal file
356
web/templates/default.json
vendored
Normal file
@ -0,0 +1,356 @@
|
||||
{
|
||||
"last_node_id": 9,
|
||||
"last_link_id": 9,
|
||||
"nodes": [
|
||||
{
|
||||
"id": 7,
|
||||
"type": "CLIPTextEncode",
|
||||
"pos": [
|
||||
413,
|
||||
389
|
||||
],
|
||||
"size": [
|
||||
425.27801513671875,
|
||||
180.6060791015625
|
||||
],
|
||||
"flags": {},
|
||||
"order": 3,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "clip",
|
||||
"type": "CLIP",
|
||||
"link": 5
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "CONDITIONING",
|
||||
"type": "CONDITIONING",
|
||||
"links": [
|
||||
6
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {},
|
||||
"widgets_values": [
|
||||
"text, watermark"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 6,
|
||||
"type": "CLIPTextEncode",
|
||||
"pos": [
|
||||
415,
|
||||
186
|
||||
],
|
||||
"size": [
|
||||
422.84503173828125,
|
||||
164.31304931640625
|
||||
],
|
||||
"flags": {},
|
||||
"order": 2,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "clip",
|
||||
"type": "CLIP",
|
||||
"link": 3
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "CONDITIONING",
|
||||
"type": "CONDITIONING",
|
||||
"links": [
|
||||
4
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {},
|
||||
"widgets_values": [
|
||||
"beautiful scenery nature glass bottle landscape, , purple galaxy bottle,"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 5,
|
||||
"type": "EmptyLatentImage",
|
||||
"pos": [
|
||||
473,
|
||||
609
|
||||
],
|
||||
"size": [
|
||||
315,
|
||||
106
|
||||
],
|
||||
"flags": {},
|
||||
"order": 1,
|
||||
"mode": 0,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "LATENT",
|
||||
"type": "LATENT",
|
||||
"links": [
|
||||
2
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {},
|
||||
"widgets_values": [
|
||||
512,
|
||||
512,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 3,
|
||||
"type": "KSampler",
|
||||
"pos": [
|
||||
863,
|
||||
186
|
||||
],
|
||||
"size": [
|
||||
315,
|
||||
262
|
||||
],
|
||||
"flags": {},
|
||||
"order": 4,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "model",
|
||||
"type": "MODEL",
|
||||
"link": 1
|
||||
},
|
||||
{
|
||||
"name": "positive",
|
||||
"type": "CONDITIONING",
|
||||
"link": 4
|
||||
},
|
||||
{
|
||||
"name": "negative",
|
||||
"type": "CONDITIONING",
|
||||
"link": 6
|
||||
},
|
||||
{
|
||||
"name": "latent_image",
|
||||
"type": "LATENT",
|
||||
"link": 2
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "LATENT",
|
||||
"type": "LATENT",
|
||||
"links": [
|
||||
7
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {},
|
||||
"widgets_values": [
|
||||
156680208700286,
|
||||
true,
|
||||
20,
|
||||
8,
|
||||
"euler",
|
||||
"normal",
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 8,
|
||||
"type": "VAEDecode",
|
||||
"pos": [
|
||||
1209,
|
||||
188
|
||||
],
|
||||
"size": [
|
||||
210,
|
||||
46
|
||||
],
|
||||
"flags": {},
|
||||
"order": 5,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "samples",
|
||||
"type": "LATENT",
|
||||
"link": 7
|
||||
},
|
||||
{
|
||||
"name": "vae",
|
||||
"type": "VAE",
|
||||
"link": 8
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "IMAGE",
|
||||
"type": "IMAGE",
|
||||
"links": [
|
||||
9
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {}
|
||||
},
|
||||
{
|
||||
"id": 9,
|
||||
"type": "SaveImage",
|
||||
"pos": [
|
||||
1451,
|
||||
189
|
||||
],
|
||||
"size": [
|
||||
210,
|
||||
26
|
||||
],
|
||||
"flags": {},
|
||||
"order": 6,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "images",
|
||||
"type": "IMAGE",
|
||||
"link": 9
|
||||
}
|
||||
],
|
||||
"properties": {}
|
||||
},
|
||||
{
|
||||
"id": 4,
|
||||
"type": "CheckpointLoaderSimple",
|
||||
"pos": [
|
||||
26,
|
||||
474
|
||||
],
|
||||
"size": [
|
||||
315,
|
||||
98
|
||||
],
|
||||
"flags": {},
|
||||
"order": 0,
|
||||
"mode": 0,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "MODEL",
|
||||
"type": "MODEL",
|
||||
"links": [
|
||||
1
|
||||
],
|
||||
"slot_index": 0
|
||||
},
|
||||
{
|
||||
"name": "CLIP",
|
||||
"type": "CLIP",
|
||||
"links": [
|
||||
3,
|
||||
5
|
||||
],
|
||||
"slot_index": 1
|
||||
},
|
||||
{
|
||||
"name": "VAE",
|
||||
"type": "VAE",
|
||||
"links": [
|
||||
8
|
||||
],
|
||||
"slot_index": 2
|
||||
}
|
||||
],
|
||||
"properties": {},
|
||||
"widgets_values": [
|
||||
"v1-5-pruned-emaonly.safetensors"
|
||||
]
|
||||
}
|
||||
],
|
||||
"links": [
|
||||
[
|
||||
1,
|
||||
4,
|
||||
0,
|
||||
3,
|
||||
0,
|
||||
"MODEL"
|
||||
],
|
||||
[
|
||||
2,
|
||||
5,
|
||||
0,
|
||||
3,
|
||||
3,
|
||||
"LATENT"
|
||||
],
|
||||
[
|
||||
3,
|
||||
4,
|
||||
1,
|
||||
6,
|
||||
0,
|
||||
"CLIP"
|
||||
],
|
||||
[
|
||||
4,
|
||||
6,
|
||||
0,
|
||||
3,
|
||||
1,
|
||||
"CONDITIONING"
|
||||
],
|
||||
[
|
||||
5,
|
||||
4,
|
||||
1,
|
||||
7,
|
||||
0,
|
||||
"CLIP"
|
||||
],
|
||||
[
|
||||
6,
|
||||
7,
|
||||
0,
|
||||
3,
|
||||
2,
|
||||
"CONDITIONING"
|
||||
],
|
||||
[
|
||||
7,
|
||||
3,
|
||||
0,
|
||||
8,
|
||||
0,
|
||||
"LATENT"
|
||||
],
|
||||
[
|
||||
8,
|
||||
4,
|
||||
2,
|
||||
8,
|
||||
1,
|
||||
"VAE"
|
||||
],
|
||||
[
|
||||
9,
|
||||
8,
|
||||
0,
|
||||
9,
|
||||
0,
|
||||
"IMAGE"
|
||||
]
|
||||
],
|
||||
"groups": [],
|
||||
"config": {},
|
||||
"extra": {},
|
||||
"version": 0.4,
|
||||
"models": [{
|
||||
"name": "v1-5-pruned-emaonly.safetensors",
|
||||
"url": "https://huggingface.co/Comfy-Org/stable-diffusion-v1-5-archive/resolve/main/v1-5-pruned-emaonly.safetensors?download=true",
|
||||
"directory": "checkpoints"
|
||||
}]
|
||||
}
|
BIN
web/templates/flux_schnell.jpg
vendored
Normal file
BIN
web/templates/flux_schnell.jpg
vendored
Normal file
Binary file not shown.
After Width: | Height: | Size: 23 KiB |
420
web/templates/flux_schnell.json
vendored
Normal file
420
web/templates/flux_schnell.json
vendored
Normal file
@ -0,0 +1,420 @@
|
||||
{
|
||||
"last_node_id": 36,
|
||||
"last_link_id": 58,
|
||||
"nodes": [
|
||||
{
|
||||
"id": 33,
|
||||
"type": "CLIPTextEncode",
|
||||
"pos": [
|
||||
390,
|
||||
400
|
||||
],
|
||||
"size": {
|
||||
"0": 422.84503173828125,
|
||||
"1": 164.31304931640625
|
||||
},
|
||||
"flags": {
|
||||
"collapsed": true
|
||||
},
|
||||
"order": 4,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "clip",
|
||||
"type": "CLIP",
|
||||
"link": 54,
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "CONDITIONING",
|
||||
"type": "CONDITIONING",
|
||||
"links": [
|
||||
55
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"title": "CLIP Text Encode (Negative Prompt)",
|
||||
"properties": {
|
||||
"Node name for S&R": "CLIPTextEncode"
|
||||
},
|
||||
"widgets_values": [
|
||||
""
|
||||
],
|
||||
"color": "#322",
|
||||
"bgcolor": "#533"
|
||||
},
|
||||
{
|
||||
"id": 27,
|
||||
"type": "EmptySD3LatentImage",
|
||||
"pos": [
|
||||
471,
|
||||
455
|
||||
],
|
||||
"size": {
|
||||
"0": 315,
|
||||
"1": 106
|
||||
},
|
||||
"flags": {},
|
||||
"order": 0,
|
||||
"mode": 0,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "LATENT",
|
||||
"type": "LATENT",
|
||||
"links": [
|
||||
51
|
||||
],
|
||||
"shape": 3,
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "EmptySD3LatentImage"
|
||||
},
|
||||
"widgets_values": [
|
||||
1024,
|
||||
1024,
|
||||
1
|
||||
],
|
||||
"color": "#323",
|
||||
"bgcolor": "#535"
|
||||
},
|
||||
{
|
||||
"id": 8,
|
||||
"type": "VAEDecode",
|
||||
"pos": [
|
||||
1151,
|
||||
195
|
||||
],
|
||||
"size": {
|
||||
"0": 210,
|
||||
"1": 46
|
||||
},
|
||||
"flags": {},
|
||||
"order": 6,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "samples",
|
||||
"type": "LATENT",
|
||||
"link": 52
|
||||
},
|
||||
{
|
||||
"name": "vae",
|
||||
"type": "VAE",
|
||||
"link": 46
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "IMAGE",
|
||||
"type": "IMAGE",
|
||||
"links": [
|
||||
9
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "VAEDecode"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": 9,
|
||||
"type": "SaveImage",
|
||||
"pos": [
|
||||
1375,
|
||||
194
|
||||
],
|
||||
"size": {
|
||||
"0": 985.3012084960938,
|
||||
"1": 1060.3828125
|
||||
},
|
||||
"flags": {},
|
||||
"order": 7,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "images",
|
||||
"type": "IMAGE",
|
||||
"link": 9
|
||||
}
|
||||
],
|
||||
"properties": {},
|
||||
"widgets_values": [
|
||||
"ComfyUI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 31,
|
||||
"type": "KSampler",
|
||||
"pos": [
|
||||
816,
|
||||
192
|
||||
],
|
||||
"size": {
|
||||
"0": 315,
|
||||
"1": 262
|
||||
},
|
||||
"flags": {},
|
||||
"order": 5,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "model",
|
||||
"type": "MODEL",
|
||||
"link": 47
|
||||
},
|
||||
{
|
||||
"name": "positive",
|
||||
"type": "CONDITIONING",
|
||||
"link": 58
|
||||
},
|
||||
{
|
||||
"name": "negative",
|
||||
"type": "CONDITIONING",
|
||||
"link": 55
|
||||
},
|
||||
{
|
||||
"name": "latent_image",
|
||||
"type": "LATENT",
|
||||
"link": 51
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "LATENT",
|
||||
"type": "LATENT",
|
||||
"links": [
|
||||
52
|
||||
],
|
||||
"shape": 3,
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "KSampler"
|
||||
},
|
||||
"widgets_values": [
|
||||
173805153958730,
|
||||
"randomize",
|
||||
4,
|
||||
1,
|
||||
"euler",
|
||||
"simple",
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 30,
|
||||
"type": "CheckpointLoaderSimple",
|
||||
"pos": [
|
||||
48,
|
||||
192
|
||||
],
|
||||
"size": {
|
||||
"0": 315,
|
||||
"1": 98
|
||||
},
|
||||
"flags": {},
|
||||
"order": 1,
|
||||
"mode": 0,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "MODEL",
|
||||
"type": "MODEL",
|
||||
"links": [
|
||||
47
|
||||
],
|
||||
"shape": 3,
|
||||
"slot_index": 0
|
||||
},
|
||||
{
|
||||
"name": "CLIP",
|
||||
"type": "CLIP",
|
||||
"links": [
|
||||
45,
|
||||
54
|
||||
],
|
||||
"shape": 3,
|
||||
"slot_index": 1
|
||||
},
|
||||
{
|
||||
"name": "VAE",
|
||||
"type": "VAE",
|
||||
"links": [
|
||||
46
|
||||
],
|
||||
"shape": 3,
|
||||
"slot_index": 2
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "CheckpointLoaderSimple"
|
||||
},
|
||||
"widgets_values": [
|
||||
"flux1-schnell-fp8.safetensors"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 6,
|
||||
"type": "CLIPTextEncode",
|
||||
"pos": [
|
||||
384,
|
||||
192
|
||||
],
|
||||
"size": {
|
||||
"0": 422.84503173828125,
|
||||
"1": 164.31304931640625
|
||||
},
|
||||
"flags": {},
|
||||
"order": 3,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "clip",
|
||||
"type": "CLIP",
|
||||
"link": 45
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "CONDITIONING",
|
||||
"type": "CONDITIONING",
|
||||
"links": [
|
||||
58
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"title": "CLIP Text Encode (Positive Prompt)",
|
||||
"properties": {
|
||||
"Node name for S&R": "CLIPTextEncode"
|
||||
},
|
||||
"widgets_values": [
|
||||
"a bottle with a beautiful rainbow galaxy inside it on top of a wooden table in the middle of a modern kitchen beside a plate of vegetables and mushrooms and a wine glasse that contains a planet earth with a plate with a half eaten apple pie on it"
|
||||
],
|
||||
"color": "#232",
|
||||
"bgcolor": "#353"
|
||||
},
|
||||
{
|
||||
"id": 34,
|
||||
"type": "Note",
|
||||
"pos": [
|
||||
831,
|
||||
501
|
||||
],
|
||||
"size": {
|
||||
"0": 282.8617858886719,
|
||||
"1": 164.08004760742188
|
||||
},
|
||||
"flags": {},
|
||||
"order": 2,
|
||||
"mode": 0,
|
||||
"properties": {
|
||||
"text": ""
|
||||
},
|
||||
"widgets_values": [
|
||||
"Note that Flux dev and schnell do not have any negative prompt so CFG should be set to 1.0. Setting CFG to 1.0 means the negative prompt is ignored.\n\nThe schnell model is a distilled model that can generate a good image with only 4 steps."
|
||||
],
|
||||
"color": "#432",
|
||||
"bgcolor": "#653"
|
||||
}
|
||||
],
|
||||
"links": [
|
||||
[
|
||||
9,
|
||||
8,
|
||||
0,
|
||||
9,
|
||||
0,
|
||||
"IMAGE"
|
||||
],
|
||||
[
|
||||
45,
|
||||
30,
|
||||
1,
|
||||
6,
|
||||
0,
|
||||
"CLIP"
|
||||
],
|
||||
[
|
||||
46,
|
||||
30,
|
||||
2,
|
||||
8,
|
||||
1,
|
||||
"VAE"
|
||||
],
|
||||
[
|
||||
47,
|
||||
30,
|
||||
0,
|
||||
31,
|
||||
0,
|
||||
"MODEL"
|
||||
],
|
||||
[
|
||||
51,
|
||||
27,
|
||||
0,
|
||||
31,
|
||||
3,
|
||||
"LATENT"
|
||||
],
|
||||
[
|
||||
52,
|
||||
31,
|
||||
0,
|
||||
8,
|
||||
0,
|
||||
"LATENT"
|
||||
],
|
||||
[
|
||||
54,
|
||||
30,
|
||||
1,
|
||||
33,
|
||||
0,
|
||||
"CLIP"
|
||||
],
|
||||
[
|
||||
55,
|
||||
33,
|
||||
0,
|
||||
31,
|
||||
2,
|
||||
"CONDITIONING"
|
||||
],
|
||||
[
|
||||
58,
|
||||
6,
|
||||
0,
|
||||
31,
|
||||
1,
|
||||
"CONDITIONING"
|
||||
]
|
||||
],
|
||||
"groups": [],
|
||||
"config": {},
|
||||
"extra": {
|
||||
"ds": {
|
||||
"scale": 1.1,
|
||||
"offset": [
|
||||
0.6836674124529055,
|
||||
1.8290357611967831
|
||||
]
|
||||
}
|
||||
},
|
||||
"models": [
|
||||
{
|
||||
"name": "flux1-schnell-fp8.safetensors",
|
||||
"url": "https://huggingface.co/Comfy-Org/flux1-schnell/resolve/main/flux1-schnell-fp8.safetensors?download=true",
|
||||
"directory": "checkpoints"
|
||||
}
|
||||
],
|
||||
"version": 0.4
|
||||
}
|
BIN
web/templates/image2image.jpg
vendored
Normal file
BIN
web/templates/image2image.jpg
vendored
Normal file
Binary file not shown.
After Width: | Height: | Size: 25 KiB |
447
web/templates/image2image.json
vendored
Normal file
447
web/templates/image2image.json
vendored
Normal file
@ -0,0 +1,447 @@
|
||||
{
|
||||
"last_node_id": 14,
|
||||
"last_link_id": 17,
|
||||
"nodes": [
|
||||
{
|
||||
"id": 7,
|
||||
"type": "CLIPTextEncode",
|
||||
"pos": [
|
||||
413,
|
||||
389
|
||||
],
|
||||
"size": {
|
||||
"0": 425.27801513671875,
|
||||
"1": 180.6060791015625
|
||||
},
|
||||
"flags": {},
|
||||
"order": 3,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "clip",
|
||||
"type": "CLIP",
|
||||
"link": 15
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "CONDITIONING",
|
||||
"type": "CONDITIONING",
|
||||
"links": [
|
||||
6
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "CLIPTextEncode"
|
||||
},
|
||||
"widgets_values": [
|
||||
"watermark, text\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 6,
|
||||
"type": "CLIPTextEncode",
|
||||
"pos": [
|
||||
415,
|
||||
186
|
||||
],
|
||||
"size": {
|
||||
"0": 422.84503173828125,
|
||||
"1": 164.31304931640625
|
||||
},
|
||||
"flags": {},
|
||||
"order": 2,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "clip",
|
||||
"type": "CLIP",
|
||||
"link": 14
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "CONDITIONING",
|
||||
"type": "CONDITIONING",
|
||||
"links": [
|
||||
4
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "CLIPTextEncode"
|
||||
},
|
||||
"widgets_values": [
|
||||
"photograph of victorian woman with wings, sky clouds, meadow grass\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 8,
|
||||
"type": "VAEDecode",
|
||||
"pos": [
|
||||
1209,
|
||||
188
|
||||
],
|
||||
"size": {
|
||||
"0": 210,
|
||||
"1": 46
|
||||
},
|
||||
"flags": {},
|
||||
"order": 6,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "samples",
|
||||
"type": "LATENT",
|
||||
"link": 7
|
||||
},
|
||||
{
|
||||
"name": "vae",
|
||||
"type": "VAE",
|
||||
"link": 17
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "IMAGE",
|
||||
"type": "IMAGE",
|
||||
"links": [
|
||||
9
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "VAEDecode"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": 9,
|
||||
"type": "SaveImage",
|
||||
"pos": [
|
||||
1451,
|
||||
189
|
||||
],
|
||||
"size": {
|
||||
"0": 210,
|
||||
"1": 58
|
||||
},
|
||||
"flags": {},
|
||||
"order": 7,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "images",
|
||||
"type": "IMAGE",
|
||||
"link": 9
|
||||
}
|
||||
],
|
||||
"properties": {},
|
||||
"widgets_values": [
|
||||
"ComfyUI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 10,
|
||||
"type": "LoadImage",
|
||||
"pos": [
|
||||
215.9799597167969,
|
||||
703.6800268554688
|
||||
],
|
||||
"size": [
|
||||
315,
|
||||
314.00002670288086
|
||||
],
|
||||
"flags": {},
|
||||
"order": 0,
|
||||
"mode": 0,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "IMAGE",
|
||||
"type": "IMAGE",
|
||||
"links": [
|
||||
10
|
||||
],
|
||||
"slot_index": 0
|
||||
},
|
||||
{
|
||||
"name": "MASK",
|
||||
"type": "MASK",
|
||||
"links": null,
|
||||
"shape": 3
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "LoadImage"
|
||||
},
|
||||
"widgets_values": [
|
||||
"example.png",
|
||||
"image"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 12,
|
||||
"type": "VAEEncode",
|
||||
"pos": [
|
||||
614.979959716797,
|
||||
707.6800268554688
|
||||
],
|
||||
"size": {
|
||||
"0": 210,
|
||||
"1": 46
|
||||
},
|
||||
"flags": {},
|
||||
"order": 4,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "pixels",
|
||||
"type": "IMAGE",
|
||||
"link": 10
|
||||
},
|
||||
{
|
||||
"name": "vae",
|
||||
"type": "VAE",
|
||||
"link": 16
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "LATENT",
|
||||
"type": "LATENT",
|
||||
"links": [
|
||||
11
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "VAEEncode"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": 3,
|
||||
"type": "KSampler",
|
||||
"pos": [
|
||||
863,
|
||||
186
|
||||
],
|
||||
"size": {
|
||||
"0": 315,
|
||||
"1": 262
|
||||
},
|
||||
"flags": {},
|
||||
"order": 5,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "model",
|
||||
"type": "MODEL",
|
||||
"link": 13
|
||||
},
|
||||
{
|
||||
"name": "positive",
|
||||
"type": "CONDITIONING",
|
||||
"link": 4
|
||||
},
|
||||
{
|
||||
"name": "negative",
|
||||
"type": "CONDITIONING",
|
||||
"link": 6
|
||||
},
|
||||
{
|
||||
"name": "latent_image",
|
||||
"type": "LATENT",
|
||||
"link": 11
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "LATENT",
|
||||
"type": "LATENT",
|
||||
"links": [
|
||||
7
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "KSampler"
|
||||
},
|
||||
"widgets_values": [
|
||||
280823642470253,
|
||||
"randomize",
|
||||
20,
|
||||
8,
|
||||
"dpmpp_2m",
|
||||
"normal",
|
||||
0.8700000000000001
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 14,
|
||||
"type": "CheckpointLoaderSimple",
|
||||
"pos": [
|
||||
19,
|
||||
433
|
||||
],
|
||||
"size": {
|
||||
"0": 315,
|
||||
"1": 98
|
||||
},
|
||||
"flags": {},
|
||||
"order": 1,
|
||||
"mode": 0,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "MODEL",
|
||||
"type": "MODEL",
|
||||
"links": [
|
||||
13
|
||||
],
|
||||
"shape": 3,
|
||||
"slot_index": 0
|
||||
},
|
||||
{
|
||||
"name": "CLIP",
|
||||
"type": "CLIP",
|
||||
"links": [
|
||||
14,
|
||||
15
|
||||
],
|
||||
"shape": 3,
|
||||
"slot_index": 1
|
||||
},
|
||||
{
|
||||
"name": "VAE",
|
||||
"type": "VAE",
|
||||
"links": [
|
||||
16,
|
||||
17
|
||||
],
|
||||
"shape": 3,
|
||||
"slot_index": 2
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "CheckpointLoaderSimple"
|
||||
},
|
||||
"widgets_values": [
|
||||
"v1-5-pruned-emaonly.safetensors"
|
||||
]
|
||||
}
|
||||
],
|
||||
"links": [
|
||||
[
|
||||
4,
|
||||
6,
|
||||
0,
|
||||
3,
|
||||
1,
|
||||
"CONDITIONING"
|
||||
],
|
||||
[
|
||||
6,
|
||||
7,
|
||||
0,
|
||||
3,
|
||||
2,
|
||||
"CONDITIONING"
|
||||
],
|
||||
[
|
||||
7,
|
||||
3,
|
||||
0,
|
||||
8,
|
||||
0,
|
||||
"LATENT"
|
||||
],
|
||||
[
|
||||
9,
|
||||
8,
|
||||
0,
|
||||
9,
|
||||
0,
|
||||
"IMAGE"
|
||||
],
|
||||
[
|
||||
10,
|
||||
10,
|
||||
0,
|
||||
12,
|
||||
0,
|
||||
"IMAGE"
|
||||
],
|
||||
[
|
||||
11,
|
||||
12,
|
||||
0,
|
||||
3,
|
||||
3,
|
||||
"LATENT"
|
||||
],
|
||||
[
|
||||
13,
|
||||
14,
|
||||
0,
|
||||
3,
|
||||
0,
|
||||
"MODEL"
|
||||
],
|
||||
[
|
||||
14,
|
||||
14,
|
||||
1,
|
||||
6,
|
||||
0,
|
||||
"CLIP"
|
||||
],
|
||||
[
|
||||
15,
|
||||
14,
|
||||
1,
|
||||
7,
|
||||
0,
|
||||
"CLIP"
|
||||
],
|
||||
[
|
||||
16,
|
||||
14,
|
||||
2,
|
||||
12,
|
||||
1,
|
||||
"VAE"
|
||||
],
|
||||
[
|
||||
17,
|
||||
14,
|
||||
2,
|
||||
8,
|
||||
1,
|
||||
"VAE"
|
||||
]
|
||||
],
|
||||
"groups": [
|
||||
{
|
||||
"title": "Loading images",
|
||||
"bounding": [
|
||||
150,
|
||||
630,
|
||||
726,
|
||||
171
|
||||
],
|
||||
"color": "#3f789e"
|
||||
}
|
||||
],
|
||||
"config": {},
|
||||
"extra": {},
|
||||
"version": 0.4,
|
||||
"models": [{
|
||||
"name": "v1-5-pruned-emaonly.safetensors",
|
||||
"url": "https://huggingface.co/Comfy-Org/stable-diffusion-v1-5-archive/resolve/main/v1-5-pruned-emaonly.safetensors?download=true",
|
||||
"directory": "checkpoints"
|
||||
}]
|
||||
}
|
BIN
web/templates/upscale.jpg
vendored
Normal file
BIN
web/templates/upscale.jpg
vendored
Normal file
Binary file not shown.
After Width: | Height: | Size: 30 KiB |
652
web/templates/upscale.json
vendored
Normal file
652
web/templates/upscale.json
vendored
Normal file
@ -0,0 +1,652 @@
|
||||
{
|
||||
"last_node_id": 16,
|
||||
"last_link_id": 23,
|
||||
"nodes": [
|
||||
{
|
||||
"id": 8,
|
||||
"type": "VAEDecode",
|
||||
"pos": [
|
||||
1235.7215957031258,
|
||||
577.1878720703122
|
||||
],
|
||||
"size": {
|
||||
"0": 210,
|
||||
"1": 46
|
||||
},
|
||||
"flags": {},
|
||||
"order": 5,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "samples",
|
||||
"type": "LATENT",
|
||||
"link": 7
|
||||
},
|
||||
{
|
||||
"name": "vae",
|
||||
"type": "VAE",
|
||||
"link": 21
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "IMAGE",
|
||||
"type": "IMAGE",
|
||||
"links": [
|
||||
9
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "VAEDecode"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": 10,
|
||||
"type": "LatentUpscale",
|
||||
"pos": [
|
||||
1238,
|
||||
170
|
||||
],
|
||||
"size": {
|
||||
"0": 315,
|
||||
"1": 130
|
||||
},
|
||||
"flags": {},
|
||||
"order": 6,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "samples",
|
||||
"type": "LATENT",
|
||||
"link": 10
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "LATENT",
|
||||
"type": "LATENT",
|
||||
"links": [
|
||||
14
|
||||
]
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "LatentUpscale"
|
||||
},
|
||||
"widgets_values": [
|
||||
"nearest-exact",
|
||||
1152,
|
||||
1152,
|
||||
"disabled"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"type": "VAEDecode",
|
||||
"pos": [
|
||||
1961,
|
||||
125
|
||||
],
|
||||
"size": {
|
||||
"0": 210,
|
||||
"1": 46
|
||||
},
|
||||
"flags": {},
|
||||
"order": 9,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "samples",
|
||||
"type": "LATENT",
|
||||
"link": 15
|
||||
},
|
||||
{
|
||||
"name": "vae",
|
||||
"type": "VAE",
|
||||
"link": 22
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "IMAGE",
|
||||
"type": "IMAGE",
|
||||
"links": [
|
||||
17
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "VAEDecode"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": 6,
|
||||
"type": "CLIPTextEncode",
|
||||
"pos": [
|
||||
374,
|
||||
171
|
||||
],
|
||||
"size": {
|
||||
"0": 422.84503173828125,
|
||||
"1": 164.31304931640625
|
||||
},
|
||||
"flags": {},
|
||||
"order": 2,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "clip",
|
||||
"type": "CLIP",
|
||||
"link": 19
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "CONDITIONING",
|
||||
"type": "CONDITIONING",
|
||||
"links": [
|
||||
4,
|
||||
12
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "CLIPTextEncode"
|
||||
},
|
||||
"widgets_values": [
|
||||
"masterpiece HDR victorian portrait painting of woman, blonde hair, mountain nature, blue sky\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 7,
|
||||
"type": "CLIPTextEncode",
|
||||
"pos": [
|
||||
377,
|
||||
381
|
||||
],
|
||||
"size": {
|
||||
"0": 425.27801513671875,
|
||||
"1": 180.6060791015625
|
||||
},
|
||||
"flags": {},
|
||||
"order": 3,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "clip",
|
||||
"type": "CLIP",
|
||||
"link": 20
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "CONDITIONING",
|
||||
"type": "CONDITIONING",
|
||||
"links": [
|
||||
6,
|
||||
13
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "CLIPTextEncode"
|
||||
},
|
||||
"widgets_values": [
|
||||
"bad hands, text, watermark\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 5,
|
||||
"type": "EmptyLatentImage",
|
||||
"pos": [
|
||||
435,
|
||||
600
|
||||
],
|
||||
"size": {
|
||||
"0": 315,
|
||||
"1": 106
|
||||
},
|
||||
"flags": {},
|
||||
"order": 0,
|
||||
"mode": 0,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "LATENT",
|
||||
"type": "LATENT",
|
||||
"links": [
|
||||
2
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "EmptyLatentImage"
|
||||
},
|
||||
"widgets_values": [
|
||||
768,
|
||||
768,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 11,
|
||||
"type": "KSampler",
|
||||
"pos": [
|
||||
1585,
|
||||
114
|
||||
],
|
||||
"size": {
|
||||
"0": 315,
|
||||
"1": 262
|
||||
},
|
||||
"flags": {},
|
||||
"order": 8,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "model",
|
||||
"type": "MODEL",
|
||||
"link": 23,
|
||||
"slot_index": 0
|
||||
},
|
||||
{
|
||||
"name": "positive",
|
||||
"type": "CONDITIONING",
|
||||
"link": 12,
|
||||
"slot_index": 1
|
||||
},
|
||||
{
|
||||
"name": "negative",
|
||||
"type": "CONDITIONING",
|
||||
"link": 13,
|
||||
"slot_index": 2
|
||||
},
|
||||
{
|
||||
"name": "latent_image",
|
||||
"type": "LATENT",
|
||||
"link": 14,
|
||||
"slot_index": 3
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "LATENT",
|
||||
"type": "LATENT",
|
||||
"links": [
|
||||
15
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "KSampler"
|
||||
},
|
||||
"widgets_values": [
|
||||
469771404043268,
|
||||
"randomize",
|
||||
14,
|
||||
8,
|
||||
"dpmpp_2m",
|
||||
"simple",
|
||||
0.5
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 12,
|
||||
"type": "SaveImage",
|
||||
"pos": [
|
||||
2203,
|
||||
123
|
||||
],
|
||||
"size": {
|
||||
"0": 407.53717041015625,
|
||||
"1": 468.13226318359375
|
||||
},
|
||||
"flags": {},
|
||||
"order": 10,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "images",
|
||||
"type": "IMAGE",
|
||||
"link": 17
|
||||
}
|
||||
],
|
||||
"properties": {},
|
||||
"widgets_values": [
|
||||
"ComfyUI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 3,
|
||||
"type": "KSampler",
|
||||
"pos": [
|
||||
845,
|
||||
172
|
||||
],
|
||||
"size": {
|
||||
"0": 315,
|
||||
"1": 262
|
||||
},
|
||||
"flags": {},
|
||||
"order": 4,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "model",
|
||||
"type": "MODEL",
|
||||
"link": 18
|
||||
},
|
||||
{
|
||||
"name": "positive",
|
||||
"type": "CONDITIONING",
|
||||
"link": 4
|
||||
},
|
||||
{
|
||||
"name": "negative",
|
||||
"type": "CONDITIONING",
|
||||
"link": 6
|
||||
},
|
||||
{
|
||||
"name": "latent_image",
|
||||
"type": "LATENT",
|
||||
"link": 2
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "LATENT",
|
||||
"type": "LATENT",
|
||||
"links": [
|
||||
7,
|
||||
10
|
||||
],
|
||||
"slot_index": 0
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "KSampler"
|
||||
},
|
||||
"widgets_values": [
|
||||
89848141647836,
|
||||
"randomize",
|
||||
12,
|
||||
8,
|
||||
"dpmpp_sde",
|
||||
"normal",
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 16,
|
||||
"type": "CheckpointLoaderSimple",
|
||||
"pos": [
|
||||
24,
|
||||
315
|
||||
],
|
||||
"size": {
|
||||
"0": 315,
|
||||
"1": 98
|
||||
},
|
||||
"flags": {},
|
||||
"order": 1,
|
||||
"mode": 0,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "MODEL",
|
||||
"type": "MODEL",
|
||||
"links": [
|
||||
18,
|
||||
23
|
||||
],
|
||||
"slot_index": 0
|
||||
},
|
||||
{
|
||||
"name": "CLIP",
|
||||
"type": "CLIP",
|
||||
"links": [
|
||||
19,
|
||||
20
|
||||
],
|
||||
"slot_index": 1
|
||||
},
|
||||
{
|
||||
"name": "VAE",
|
||||
"type": "VAE",
|
||||
"links": [
|
||||
21,
|
||||
22
|
||||
],
|
||||
"slot_index": 2
|
||||
}
|
||||
],
|
||||
"properties": {
|
||||
"Node name for S&R": "CheckpointLoaderSimple"
|
||||
},
|
||||
"widgets_values": [
|
||||
"v2-1_768-ema-pruned.safetensors"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 9,
|
||||
"type": "SaveImage",
|
||||
"pos": [
|
||||
1495.7215957031258,
|
||||
576.1878720703122
|
||||
],
|
||||
"size": [
|
||||
232.9403301043692,
|
||||
282.4336258387117
|
||||
],
|
||||
"flags": {},
|
||||
"order": 7,
|
||||
"mode": 0,
|
||||
"inputs": [
|
||||
{
|
||||
"name": "images",
|
||||
"type": "IMAGE",
|
||||
"link": 9
|
||||
}
|
||||
],
|
||||
"properties": {},
|
||||
"widgets_values": [
|
||||
"ComfyUI"
|
||||
]
|
||||
}
|
||||
],
|
||||
"links": [
|
||||
[
|
||||
2,
|
||||
5,
|
||||
0,
|
||||
3,
|
||||
3,
|
||||
"LATENT"
|
||||
],
|
||||
[
|
||||
4,
|
||||
6,
|
||||
0,
|
||||
3,
|
||||
1,
|
||||
"CONDITIONING"
|
||||
],
|
||||
[
|
||||
6,
|
||||
7,
|
||||
0,
|
||||
3,
|
||||
2,
|
||||
"CONDITIONING"
|
||||
],
|
||||
[
|
||||
7,
|
||||
3,
|
||||
0,
|
||||
8,
|
||||
0,
|
||||
"LATENT"
|
||||
],
|
||||
[
|
||||
9,
|
||||
8,
|
||||
0,
|
||||
9,
|
||||
0,
|
||||
"IMAGE"
|
||||
],
|
||||
[
|
||||
10,
|
||||
3,
|
||||
0,
|
||||
10,
|
||||
0,
|
||||
"LATENT"
|
||||
],
|
||||
[
|
||||
12,
|
||||
6,
|
||||
0,
|
||||
11,
|
||||
1,
|
||||
"CONDITIONING"
|
||||
],
|
||||
[
|
||||
13,
|
||||
7,
|
||||
0,
|
||||
11,
|
||||
2,
|
||||
"CONDITIONING"
|
||||
],
|
||||
[
|
||||
14,
|
||||
10,
|
||||
0,
|
||||
11,
|
||||
3,
|
||||
"LATENT"
|
||||
],
|
||||
[
|
||||
15,
|
||||
11,
|
||||
0,
|
||||
13,
|
||||
0,
|
||||
"LATENT"
|
||||
],
|
||||
[
|
||||
17,
|
||||
13,
|
||||
0,
|
||||
12,
|
||||
0,
|
||||
"IMAGE"
|
||||
],
|
||||
[
|
||||
18,
|
||||
16,
|
||||
0,
|
||||
3,
|
||||
0,
|
||||
"MODEL"
|
||||
],
|
||||
[
|
||||
19,
|
||||
16,
|
||||
1,
|
||||
6,
|
||||
0,
|
||||
"CLIP"
|
||||
],
|
||||
[
|
||||
20,
|
||||
16,
|
||||
1,
|
||||
7,
|
||||
0,
|
||||
"CLIP"
|
||||
],
|
||||
[
|
||||
21,
|
||||
16,
|
||||
2,
|
||||
8,
|
||||
1,
|
||||
"VAE"
|
||||
],
|
||||
[
|
||||
22,
|
||||
16,
|
||||
2,
|
||||
13,
|
||||
1,
|
||||
"VAE"
|
||||
],
|
||||
[
|
||||
23,
|
||||
16,
|
||||
0,
|
||||
11,
|
||||
0,
|
||||
"MODEL"
|
||||
]
|
||||
],
|
||||
"groups": [
|
||||
{
|
||||
"title": "Txt2Img",
|
||||
"bounding": [
|
||||
-1,
|
||||
30,
|
||||
1211,
|
||||
708
|
||||
],
|
||||
"color": "#a1309b"
|
||||
},
|
||||
{
|
||||
"title": "Save Intermediate Image",
|
||||
"bounding": [
|
||||
1225,
|
||||
500,
|
||||
516,
|
||||
196
|
||||
],
|
||||
"color": "#3f789e"
|
||||
},
|
||||
{
|
||||
"title": "Hires Fix",
|
||||
"bounding": [
|
||||
1224,
|
||||
29,
|
||||
710,
|
||||
464
|
||||
],
|
||||
"color": "#b58b2a"
|
||||
},
|
||||
{
|
||||
"title": "Save Final Image",
|
||||
"bounding": [
|
||||
1949,
|
||||
31,
|
||||
483,
|
||||
199
|
||||
],
|
||||
"color": "#3f789e"
|
||||
}
|
||||
],
|
||||
"config": {},
|
||||
"extra": {},
|
||||
"version": 0.4,
|
||||
"models": [
|
||||
{
|
||||
"name": "v2-1_768-ema-pruned.safetensors",
|
||||
"url": "https://huggingface.co/stabilityai/stable-diffusion-2-1/resolve/main/v2-1_768-ema-pruned.safetensors?download=true",
|
||||
"directory": "checkpoints"
|
||||
}
|
||||
]
|
||||
}
|
Loading…
Reference in New Issue
Block a user