Merge branch 'master' into sa_solver

This commit is contained in:
chaObserv 2024-10-13 20:44:03 +08:00 committed by GitHub
commit ce0bff9a4b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
72 changed files with 85364 additions and 68792 deletions

View File

@ -23,7 +23,7 @@ jobs:
runner_label: [self-hosted, Linux]
flags: ""
- os: windows
runner_label: [self-hosted, win]
runner_label: [self-hosted, Windows]
flags: ""
runs-on: ${{ matrix.runner_label }}
steps:

View File

@ -32,7 +32,7 @@ jobs:
runner_label: [self-hosted, Linux]
flags: ""
- os: windows
runner_label: [self-hosted, win]
runner_label: [self-hosted, Windows]
flags: ""
runs-on: ${{ matrix.runner_label }}
steps:
@ -55,7 +55,7 @@ jobs:
torch_version: ["nightly"]
include:
- os: windows
runner_label: [self-hosted, win]
runner_label: [self-hosted, Windows]
flags: ""
runs-on: ${{ matrix.runner_label }}
steps:

View File

@ -10,14 +10,14 @@ def get_logs():
return "\n".join([formatter.format(x) for x in logs])
def setup_logger(verbose: bool = False, capacity: int = 300):
def setup_logger(log_level: str = 'INFO', capacity: int = 300):
global logs
if logs:
return
# Setup default global logger
logger = logging.getLogger()
logger.setLevel(logging.DEBUG if verbose else logging.INFO)
logger.setLevel(log_level)
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(logging.Formatter("%(message)s"))

View File

@ -36,7 +36,7 @@ class EnumAction(argparse.Action):
parser = argparse.ArgumentParser()
parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0", help="Specify the IP address to listen on (default: 127.0.0.1). If --listen is provided without an argument, it defaults to 0.0.0.0. (listens on all)")
parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0,::", help="Specify the IP address to listen on (default: 127.0.0.1). You can give a list of ip addresses by separating them with a comma like: 127.2.2.2,127.3.3.3 If --listen is provided without an argument, it defaults to 0.0.0.0,:: (listens on all ipv4 and ipv6)")
parser.add_argument("--port", type=int, default=8188, help="Set the listen port.")
parser.add_argument("--tls-keyfile", type=str, help="Path to TLS (SSL) key file. Enables TLS, makes app accessible at https://... requires --tls-certfile to function")
parser.add_argument("--tls-certfile", type=str, help="Path to TLS (SSL) certificate file. Enables TLS, makes app accessible at https://... requires --tls-keyfile to function")
@ -136,7 +136,7 @@ parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Dis
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
parser.add_argument("--verbose", action="store_true", help="Enables more debug prints.")
parser.add_argument("--verbose", default='INFO', const='DEBUG', nargs="?", choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Set the logging level')
# The default built-in provider hosted under web/
DEFAULT_VERSION_STRING = "comfyanonymous/ComfyUI@latest"

View File

@ -109,8 +109,7 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
keys = list(sd.keys())
for k in keys:
if k not in u:
t = sd.pop(k)
del t
sd.pop(k)
return clip
def load(ckpt_path):

View File

@ -237,6 +237,7 @@ class ControlNet(ControlBase):
if len(self.extra_concat_orig) > 0:
to_concat = []
for c in self.extra_concat_orig:
c = c.to(self.cond_hint.device)
c = comfy.utils.common_upscale(c, self.cond_hint.shape[3], self.cond_hint.shape[2], self.upscale_algorithm, "center")
to_concat.append(comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[0]))
self.cond_hint = torch.cat([self.cond_hint] + to_concat, dim=1)

View File

@ -1,5 +1,4 @@
import torch
import math
def calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=None):
mantissa_scaled = torch.where(

View File

@ -1266,3 +1266,36 @@ def sample_dpmpp_2s_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback
if sigmas[i + 1] > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
return x
@torch.no_grad()
def sample_dpmpp_2m_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
"""DPM-Solver++(2M)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
t_fn = lambda sigma: sigma.log().neg()
old_uncond_denoised = None
uncond_denoised = None
def post_cfg_function(args):
nonlocal uncond_denoised
uncond_denoised = args["uncond_denoised"]
return args["denoised"]
model_options = extra_args.get("model_options", {}).copy()
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
h = t_next - t
if old_uncond_denoised is None or sigmas[i + 1] == 0:
denoised_mix = -torch.exp(-h) * uncond_denoised
else:
h_last = t - t_fn(sigmas[i - 1])
r = h_last / h
denoised_mix = -torch.exp(-h) * uncond_denoised - torch.expm1(-h) * (1 / (2 * r)) * (denoised - old_uncond_denoised)
x = denoised + denoised_mix + torch.exp(-h) * x
old_uncond_denoised = uncond_denoised
return x

View File

@ -4,6 +4,7 @@ class LatentFormat:
scale_factor = 1.0
latent_channels = 4
latent_rgb_factors = None
latent_rgb_factors_bias = None
taesd_decoder_name = None
def process_in(self, latent):
@ -30,11 +31,13 @@ class SDXL(LatentFormat):
def __init__(self):
self.latent_rgb_factors = [
# R G B
[ 0.3920, 0.4054, 0.4549],
[-0.2634, -0.0196, 0.0653],
[ 0.0568, 0.1687, -0.0755],
[-0.3112, -0.2359, -0.2076]
[ 0.3651, 0.4232, 0.4341],
[-0.2533, -0.0042, 0.1068],
[ 0.1076, 0.1111, -0.0362],
[-0.3165, -0.2492, -0.2188]
]
self.latent_rgb_factors_bias = [ 0.1084, -0.0175, -0.0011]
self.taesd_decoder_name = "taesdxl_decoder"
class SDXL_Playground_2_5(LatentFormat):
@ -112,23 +115,24 @@ class SD3(LatentFormat):
self.scale_factor = 1.5305
self.shift_factor = 0.0609
self.latent_rgb_factors = [
[-0.0645, 0.0177, 0.1052],
[ 0.0028, 0.0312, 0.0650],
[ 0.1848, 0.0762, 0.0360],
[ 0.0944, 0.0360, 0.0889],
[ 0.0897, 0.0506, -0.0364],
[-0.0020, 0.1203, 0.0284],
[ 0.0855, 0.0118, 0.0283],
[-0.0539, 0.0658, 0.1047],
[-0.0057, 0.0116, 0.0700],
[-0.0412, 0.0281, -0.0039],
[ 0.1106, 0.1171, 0.1220],
[-0.0248, 0.0682, -0.0481],
[ 0.0815, 0.0846, 0.1207],
[-0.0120, -0.0055, -0.0867],
[-0.0749, -0.0634, -0.0456],
[-0.1418, -0.1457, -0.1259]
[-0.0922, -0.0175, 0.0749],
[ 0.0311, 0.0633, 0.0954],
[ 0.1994, 0.0927, 0.0458],
[ 0.0856, 0.0339, 0.0902],
[ 0.0587, 0.0272, -0.0496],
[-0.0006, 0.1104, 0.0309],
[ 0.0978, 0.0306, 0.0427],
[-0.0042, 0.1038, 0.1358],
[-0.0194, 0.0020, 0.0669],
[-0.0488, 0.0130, -0.0268],
[ 0.0922, 0.0988, 0.0951],
[-0.0278, 0.0524, -0.0542],
[ 0.0332, 0.0456, 0.0895],
[-0.0069, -0.0030, -0.0810],
[-0.0596, -0.0465, -0.0293],
[-0.1448, -0.1463, -0.1189]
]
self.latent_rgb_factors_bias = [0.2394, 0.2135, 0.1925]
self.taesd_decoder_name = "taesd3_decoder"
def process_in(self, latent):
@ -146,23 +150,24 @@ class Flux(SD3):
self.scale_factor = 0.3611
self.shift_factor = 0.1159
self.latent_rgb_factors =[
[-0.0404, 0.0159, 0.0609],
[ 0.0043, 0.0298, 0.0850],
[ 0.0328, -0.0749, -0.0503],
[-0.0245, 0.0085, 0.0549],
[ 0.0966, 0.0894, 0.0530],
[ 0.0035, 0.0399, 0.0123],
[ 0.0583, 0.1184, 0.1262],
[-0.0191, -0.0206, -0.0306],
[-0.0324, 0.0055, 0.1001],
[ 0.0955, 0.0659, -0.0545],
[-0.0504, 0.0231, -0.0013],
[ 0.0500, -0.0008, -0.0088],
[ 0.0982, 0.0941, 0.0976],
[-0.1233, -0.0280, -0.0897],
[-0.0005, -0.0530, -0.0020],
[-0.1273, -0.0932, -0.0680]
[-0.0346, 0.0244, 0.0681],
[ 0.0034, 0.0210, 0.0687],
[ 0.0275, -0.0668, -0.0433],
[-0.0174, 0.0160, 0.0617],
[ 0.0859, 0.0721, 0.0329],
[ 0.0004, 0.0383, 0.0115],
[ 0.0405, 0.0861, 0.0915],
[-0.0236, -0.0185, -0.0259],
[-0.0245, 0.0250, 0.1180],
[ 0.1008, 0.0755, -0.0421],
[-0.0515, 0.0201, 0.0011],
[ 0.0428, -0.0012, -0.0036],
[ 0.0817, 0.0765, 0.0749],
[-0.1264, -0.0522, -0.1103],
[-0.0280, -0.0881, -0.0499],
[-0.1262, -0.0982, -0.0778]
]
self.latent_rgb_factors_bias = [-0.0329, -0.0718, -0.0851]
self.taesd_decoder_name = "taef1_decoder"
def process_in(self, latent):

View File

@ -108,7 +108,7 @@ class Flux(nn.Module):
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
vec = vec + self.vector_in(y)
vec = vec + self.vector_in(y[:,:self.params.vec_in_dim])
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
@ -151,8 +151,8 @@ class Flux(nn.Module):
h_len = ((h + (patch_size // 2)) // patch_size)
w_len = ((w + (patch_size // 2)) // patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[..., 1] = img_ids[..., 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype)[None, :]
img_ids[:, :, 1] = torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)

View File

@ -294,6 +294,7 @@ def model_lora_keys_unet(model, key_map={}):
unet_key = "diffusion_model.{}".format(diffusers_keys[k])
key_lora = k[:-len(".weight")].replace(".", "_")
key_map["lora_unet_{}".format(key_lora)] = unet_key
key_map["lycoris_{}".format(key_lora)] = unet_key #simpletuner lycoris format
diffusers_lora_prefix = ["", "unet."]
for p in diffusers_lora_prefix:
@ -342,10 +343,10 @@ def model_lora_keys_unet(model, key_map={}):
return key_map
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype):
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function):
dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, intermediate_dtype)
lora_diff *= alpha
weight_calc = weight + lora_diff.type(weight.dtype)
weight_calc = weight + function(lora_diff).type(weight.dtype)
weight_norm = (
weight_calc.transpose(0, 1)
.reshape(weight_calc.shape[1], -1)
@ -452,7 +453,7 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32):
try:
lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape)
if dora_scale is not None:
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype))
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
@ -498,7 +499,7 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32):
try:
lora_diff = torch.kron(w1, w2).reshape(weight.shape)
if dora_scale is not None:
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype))
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
@ -535,7 +536,7 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32):
try:
lora_diff = (m1 * m2).reshape(weight.shape)
if dora_scale is not None:
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype))
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
@ -576,7 +577,7 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32):
lora_diff += torch.mm(b1, b2).reshape(weight.shape)
if dora_scale is not None:
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype))
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:

View File

@ -96,7 +96,7 @@ class BaseModel(torch.nn.Module):
if not unet_config.get("disable_unet_model_creation", False):
if model_config.custom_operations is None:
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype)
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=model_config.optimizations.get("fp8", False))
else:
operations = model_config.custom_operations
self.diffusion_model = unet_model(**unet_config, device=device, operations=operations)

View File

@ -145,7 +145,7 @@ total_ram = psutil.virtual_memory().total / (1024 * 1024)
logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
try:
logging.info("pytorch version: {}".format(torch.version.__version__))
logging.info("pytorch version: {}".format(torch_version))
except:
pass
@ -899,7 +899,7 @@ def force_upcast_attention_dtype():
upcast = args.force_upcast_attention
try:
macos_version = tuple(int(n) for n in platform.mac_ver()[0].split("."))
if (14, 5) <= macos_version < (14, 7): # black image bug on recent versions of MacOS
if (14, 5) <= macos_version <= (15, 0, 1): # black image bug on recent versions of macOS
upcast = True
except:
pass
@ -1065,6 +1065,9 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
return False
def supports_fp8_compute(device=None):
if not is_nvidia():
return False
props = torch.cuda.get_device_properties(device)
if props.major >= 9:
return True
@ -1072,6 +1075,14 @@ def supports_fp8_compute(device=None):
return False
if props.minor < 9:
return False
if int(torch_version[0]) < 2 or (int(torch_version[0]) == 2 and int(torch_version[2]) < 3):
return False
if WINDOWS:
if (int(torch_version[0]) == 2 and int(torch_version[2]) < 4):
return False
return True
def soft_empty_cache(force=False):

View File

@ -88,8 +88,12 @@ class LowVramPatch:
self.key = key
self.patches = patches
def __call__(self, weight):
return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=weight.dtype)
intermediate_dtype = weight.dtype
if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops
intermediate_dtype = torch.float32
return comfy.float.stochastic_rounding(comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype), weight.dtype, seed=string_to_seed(self.key))
return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype)
class ModelPatcher:
def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False):
self.size = size

View File

@ -260,7 +260,6 @@ def fp8_linear(self, input):
if len(input.shape) == 3:
inn = input.reshape(-1, input.shape[2]).to(dtype)
non_blocking = comfy.model_management.device_supports_non_blocking(input.device)
w, bias = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input.dtype)
w = w.t()
@ -300,7 +299,11 @@ class fp8_ops(manual_cast):
return torch.nn.functional.linear(input, weight, bias)
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False):
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False):
if comfy.model_management.supports_fp8_compute(load_device):
if (fp8_optimizations or args.fast) and not disable_fast_fp8:
return fp8_ops
if compute_dtype is None or weight_dtype == compute_dtype:
return disable_weight_init
if args.fast and not disable_fast_fp8:

View File

@ -571,8 +571,8 @@ class Sampler:
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
"ipndm", "ipndm_v", "deis", 'sa_solver', "sa_solver_gpu", "sa_solver_pece", "sa_solver_pece_gpu"]
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
"ipndm", "ipndm_v", "deis", "sa_solver", "sa_solver_gpu", "sa_solver_pece", "sa_solver_pece_gpu"]
class KSAMPLER(Sampler):
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):

View File

@ -29,7 +29,6 @@ import comfy.text_encoders.long_clipl
import comfy.model_patcher
import comfy.lora
import comfy.t2i_adapter.adapter
import comfy.supported_models_base
import comfy.taesd.taesd
def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
@ -348,7 +347,7 @@ class VAE:
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
free_memory = model_management.get_free_memory(self.device)
batch_number = int(free_memory / memory_used)
batch_number = int(free_memory / max(1, memory_used))
batch_number = max(1, batch_number)
samples = torch.empty((pixel_samples.shape[0], self.latent_channels) + tuple(map(lambda a: a // self.downscale_ratio, pixel_samples.shape[2:])), device=self.output_device)
for x in range(0, pixel_samples.shape[0], batch_number):
@ -406,8 +405,48 @@ def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DI
clip_data.append(comfy.utils.load_torch_file(p, safe_load=True))
return load_text_encoder_state_dicts(clip_data, embedding_directory=embedding_directory, clip_type=clip_type, model_options=model_options)
class TEModel(Enum):
CLIP_L = 1
CLIP_H = 2
CLIP_G = 3
T5_XXL = 4
T5_XL = 5
T5_BASE = 6
def detect_te_model(sd):
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
return TEModel.CLIP_G
if "text_model.encoder.layers.22.mlp.fc1.weight" in sd:
return TEModel.CLIP_H
if "text_model.encoder.layers.0.mlp.fc1.weight" in sd:
return TEModel.CLIP_L
if "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in sd:
weight = sd["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"]
if weight.shape[-1] == 4096:
return TEModel.T5_XXL
elif weight.shape[-1] == 2048:
return TEModel.T5_XL
if "encoder.block.0.layer.0.SelfAttention.k.weight" in sd:
return TEModel.T5_BASE
return None
def t5xxl_weight_dtype(clip_data):
weight_name = "encoder.block.23.layer.1.DenseReluDense.wi_1.weight"
dtype_t5 = None
for sd in clip_data:
weight = sd.get(weight_name, None)
if weight is not None:
dtype_t5 = weight.dtype
break
return dtype_t5
def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
clip_data = state_dicts
class EmptyClass:
pass
@ -421,53 +460,52 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target = EmptyClass()
clip_target.params = {}
if len(clip_data) == 1:
if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]:
te_model = detect_te_model(clip_data[0])
if te_model == TEModel.CLIP_G:
if clip_type == CLIPType.STABLE_CASCADE:
clip_target.clip = sdxl_clip.StableCascadeClipModel
clip_target.tokenizer = sdxl_clip.StableCascadeTokenizer
elif clip_type == CLIPType.SD3:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=True, t5=False)
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
else:
clip_target.clip = sdxl_clip.SDXLRefinerClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]:
elif te_model == TEModel.CLIP_H:
clip_target.clip = comfy.text_encoders.sd2_clip.SD2ClipModel
clip_target.tokenizer = comfy.text_encoders.sd2_clip.SD2Tokenizer
elif "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in clip_data[0]:
weight = clip_data[0]["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"]
dtype_t5 = weight.dtype
if weight.shape[-1] == 4096:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, dtype_t5=dtype_t5)
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif weight.shape[-1] == 2048:
clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model
clip_target.tokenizer = comfy.text_encoders.aura_t5.AuraT5Tokenizer
elif "encoder.block.0.layer.0.SelfAttention.k.weight" in clip_data[0]:
elif te_model == TEModel.T5_XXL:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, dtype_t5=t5xxl_weight_dtype(clip_data))
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif te_model == TEModel.T5_XL:
clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model
clip_target.tokenizer = comfy.text_encoders.aura_t5.AuraT5Tokenizer
elif te_model == TEModel.T5_BASE:
clip_target.clip = comfy.text_encoders.sa_t5.SAT5Model
clip_target.tokenizer = comfy.text_encoders.sa_t5.SAT5Tokenizer
else:
w = clip_data[0].get("text_model.embeddings.position_embedding.weight", None)
clip_target.clip = sd1_clip.SD1ClipModel
clip_target.tokenizer = sd1_clip.SD1Tokenizer
if clip_type == CLIPType.SD3:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False)
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
else:
clip_target.clip = sd1_clip.SD1ClipModel
clip_target.tokenizer = sd1_clip.SD1Tokenizer
elif len(clip_data) == 2:
if clip_type == CLIPType.SD3:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=True, t5=False)
te_models = [detect_te_model(clip_data[0]), detect_te_model(clip_data[1])]
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=TEModel.CLIP_L in te_models, clip_g=TEModel.CLIP_G in te_models, t5=TEModel.T5_XXL in te_models, dtype_t5=t5xxl_weight_dtype(clip_data))
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif clip_type == CLIPType.HUNYUAN_DIT:
clip_target.clip = comfy.text_encoders.hydit.HyditModel
clip_target.tokenizer = comfy.text_encoders.hydit.HyditTokenizer
elif clip_type == CLIPType.FLUX:
weight_name = "encoder.block.23.layer.1.DenseReluDense.wi_1.weight"
weight = clip_data[0].get(weight_name, clip_data[1].get(weight_name, None))
dtype_t5 = None
if weight is not None:
dtype_t5 = weight.dtype
clip_target.clip = comfy.text_encoders.flux.flux_clip(dtype_t5=dtype_t5)
clip_target.clip = comfy.text_encoders.flux.flux_clip(dtype_t5=t5xxl_weight_dtype(clip_data))
clip_target.tokenizer = comfy.text_encoders.flux.FluxTokenizer
else:
clip_target.clip = sdxl_clip.SDXLClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
elif len(clip_data) == 3:
clip_target.clip = comfy.text_encoders.sd3_clip.SD3ClipModel
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(dtype_t5=t5xxl_weight_dtype(clip_data))
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
parameters = 0
@ -546,7 +584,7 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
unet_weight_dtype.append(weight_dtype)
model_config.custom_operations = model_options.get("custom_operations", None)
unet_dtype = model_options.get("weight_dtype", None)
unet_dtype = model_options.get("dtype", model_options.get("weight_dtype", None))
if unet_dtype is None:
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype)
@ -560,7 +598,6 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
if output_model:
inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype)
offload_device = model_management.unet_offload_device()
model = model_config.get_model(sd, diffusion_model_prefix, device=inital_load_device)
model.load_model_weights(sd, diffusion_model_prefix)
@ -646,6 +683,9 @@ def load_diffusion_model_state_dict(sd, model_options={}): #load unet in diffuse
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
model_config.custom_operations = model_options.get("custom_operations", model_config.custom_operations)
if model_options.get("fp8_optimizations", False):
model_config.optimizations["fp8"] = True
model = model_config.get_model(new_sd, "")
model = model.to(offload_device)
model.load_model_weights(new_sd, "")

View File

@ -80,7 +80,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
"pooled",
"hidden"
]
def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
def __init__(self, device="cpu", max_length=77,
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel,
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False, zero_out_masked=False,
return_projected_pooled=True, return_attention_masks=False, model_options={}): # clip-vit-base-patch32

View File

@ -49,6 +49,7 @@ class BASE:
manual_cast_dtype = None
custom_operations = None
optimizations = {"fp8": False}
@classmethod
def matches(s, unet_config, state_dict=None):
@ -71,6 +72,7 @@ class BASE:
self.unet_config = unet_config.copy()
self.sampling_settings = self.sampling_settings.copy()
self.latent_format = self.latent_format()
self.optimizations = self.optimizations.copy()
for x in self.unet_extra_config:
self.unet_config[x] = self.unet_extra_config[x]

View File

@ -13,7 +13,7 @@ class T5XXLModel(sd1_clip.SDClipModel):
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
class FluxTokenizer:

View File

@ -8,9 +8,9 @@ import comfy.model_management
import logging
class T5XXLModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=False, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json")
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, model_options=model_options)
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
@ -39,7 +39,7 @@ class SD3Tokenizer:
return {}
class SD3ClipModel(torch.nn.Module):
def __init__(self, clip_l=True, clip_g=True, t5=True, dtype_t5=None, device="cpu", dtype=None, model_options={}):
def __init__(self, clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5_attention_mask=False, device="cpu", dtype=None, model_options={}):
super().__init__()
self.dtypes = set()
if clip_l:
@ -57,7 +57,8 @@ class SD3ClipModel(torch.nn.Module):
if t5:
dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options)
self.t5_attention_mask = t5_attention_mask
self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options, attention_mask=self.t5_attention_mask)
self.dtypes.add(dtype_t5)
else:
self.t5xxl = None
@ -87,6 +88,7 @@ class SD3ClipModel(torch.nn.Module):
lg_out = None
pooled = None
out = None
extra = {}
if len(token_weight_pairs_g) > 0 or len(token_weight_pairs_l) > 0:
if self.clip_l is not None:
@ -111,7 +113,11 @@ class SD3ClipModel(torch.nn.Module):
pooled = torch.cat((l_pooled, g_pooled), dim=-1)
if self.t5xxl is not None:
t5_out, t5_pooled = self.t5xxl.encode_token_weights(token_weight_pairs_t5)
t5_output = self.t5xxl.encode_token_weights(token_weight_pairs_t5)
t5_out, t5_pooled = t5_output[:2]
if self.t5_attention_mask:
extra["attention_mask"] = t5_output[2]["attention_mask"]
if lg_out is not None:
out = torch.cat([lg_out, t5_out], dim=-2)
else:
@ -123,7 +129,7 @@ class SD3ClipModel(torch.nn.Module):
if pooled is None:
pooled = torch.zeros((1, 768 + 1280), device=comfy.model_management.intermediate_device())
return out, pooled
return out, pooled, extra
def load_sd(self, sd):
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
@ -133,8 +139,8 @@ class SD3ClipModel(torch.nn.Module):
else:
return self.t5xxl.load_sd(sd)
def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None):
def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5_attention_mask=False):
class SD3ClipModel_(SD3ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, device=device, dtype=dtype, model_options=model_options)
super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, t5_attention_mask=t5_attention_mask, device=device, dtype=dtype, model_options=model_options)
return SD3ClipModel_

View File

@ -16,14 +16,15 @@ class EmptyLatentAudio:
@classmethod
def INPUT_TYPES(s):
return {"required": {"seconds": ("FLOAT", {"default": 47.6, "min": 1.0, "max": 1000.0, "step": 0.1})}}
return {"required": {"seconds": ("FLOAT", {"default": 47.6, "min": 1.0, "max": 1000.0, "step": 0.1}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
CATEGORY = "latent/audio"
def generate(self, seconds):
batch_size = 1
def generate(self, seconds, batch_size):
length = round((seconds * 44100 / 2048) / 2) * 2
latent = torch.zeros([batch_size, 64, length], device=self.device)
return ({"samples":latent, "type": "audio"}, )

View File

@ -17,7 +17,7 @@ class PatchModelAddDownscale:
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "_for_testing"
CATEGORY = "model_patches/unet"
def patch(self, model, block_number, downscale_factor, start_percent, end_percent, downscale_after_skip, downscale_method, upscale_method):
model_sampling = model.get_model_object("model_sampling")

View File

@ -116,6 +116,7 @@ class StableCascade_SuperResolutionControlnet:
RETURN_NAMES = ("controlnet_input", "stage_c", "stage_b")
FUNCTION = "generate"
EXPERIMENTAL = True
CATEGORY = "_for_testing/stable_cascade"
def generate(self, image, vae):

View File

@ -154,7 +154,7 @@ class TomePatchModel:
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "_for_testing"
CATEGORY = "model_patches/unet"
def patch(self, model, ratio):
self.u = None

View File

@ -4,6 +4,7 @@ class TorchCompileModel:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"backend": (["inductor", "cudagraphs"],),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
@ -11,9 +12,9 @@ class TorchCompileModel:
CATEGORY = "_for_testing"
EXPERIMENTAL = True
def patch(self, model):
def patch(self, model, backend):
m = model.clone()
m.add_object_patch("diffusion_model", torch.compile(model=m.get_model_object("diffusion_model")))
m.add_object_patch("diffusion_model", torch.compile(model=m.get_model_object("diffusion_model"), backend=backend))
return (m, )
NODE_CLASS_MAPPINGS = {

View File

@ -107,7 +107,7 @@ class VideoTriangleCFGGuidance:
return (m, )
class ImageOnlyCheckpointSave(comfy_extras.nodes_model_merging.CheckpointSave):
CATEGORY = "_for_testing"
CATEGORY = "advanced/model_merging"
@classmethod
def INPUT_TYPES(s):

View File

@ -37,6 +37,7 @@ class SaveImageWebsocket:
return {}
@classmethod
def IS_CHANGED(s, images):
return time.time()

View File

@ -234,8 +234,12 @@ def recursive_search(directory: str, excluded_dir_names: list[str] | None=None)
for dirpath, subdirs, filenames in os.walk(directory, followlinks=True, topdown=True):
subdirs[:] = [d for d in subdirs if d not in excluded_dir_names]
for file_name in filenames:
relative_path = os.path.relpath(os.path.join(dirpath, file_name), directory)
result.append(relative_path)
try:
relative_path = os.path.relpath(os.path.join(dirpath, file_name), directory)
result.append(relative_path)
except:
logging.warning(f"Warning: Unable to access {file_name}. Skipping this file.")
continue
for d in subdirs:
path: str = os.path.join(dirpath, d)

View File

@ -36,12 +36,20 @@ class TAESDPreviewerImpl(LatentPreviewer):
class Latent2RGBPreviewer(LatentPreviewer):
def __init__(self, latent_rgb_factors):
self.latent_rgb_factors = torch.tensor(latent_rgb_factors, device="cpu")
def __init__(self, latent_rgb_factors, latent_rgb_factors_bias=None):
self.latent_rgb_factors = torch.tensor(latent_rgb_factors, device="cpu").transpose(0, 1)
self.latent_rgb_factors_bias = None
if latent_rgb_factors_bias is not None:
self.latent_rgb_factors_bias = torch.tensor(latent_rgb_factors_bias, device="cpu")
def decode_latent_to_preview(self, x0):
self.latent_rgb_factors = self.latent_rgb_factors.to(dtype=x0.dtype, device=x0.device)
latent_image = x0[0].permute(1, 2, 0) @ self.latent_rgb_factors
if self.latent_rgb_factors_bias is not None:
self.latent_rgb_factors_bias = self.latent_rgb_factors_bias.to(dtype=x0.dtype, device=x0.device)
latent_image = torch.nn.functional.linear(x0[0].permute(1, 2, 0), self.latent_rgb_factors, bias=self.latent_rgb_factors_bias)
# latent_image = x0[0].permute(1, 2, 0) @ self.latent_rgb_factors
return preview_to_image(latent_image)
@ -71,7 +79,7 @@ def get_previewer(device, latent_format):
if previewer is None:
if latent_format.latent_rgb_factors is not None:
previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors)
previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors, latent_format.latent_rgb_factors_bias)
return previewer
def prepare_callback(model, steps, x0_output_dict=None):

View File

@ -9,7 +9,7 @@ from comfy.cli_args import args
from app.logger import setup_logger
setup_logger(verbose=args.verbose)
setup_logger(log_level=args.verbose)
def execute_prestartup_script():
@ -160,7 +160,10 @@ def prompt_worker(q, server):
need_gc = False
async def run(server, address='', port=8188, verbose=True, call_on_start=None):
await asyncio.gather(server.start(address, port, verbose, call_on_start), server.publish_loop())
addresses = []
for addr in address.split(","):
addresses.append((addr, port))
await asyncio.gather(server.start_multi_address(addresses, call_on_start), server.publish_loop())
def hijack_progress(server):
@ -248,6 +251,8 @@ if __name__ == "__main__":
import webbrowser
if os.name == 'nt' and address == '0.0.0.0':
address = '127.0.0.1'
if ':' in address:
address = "[{}]".format(address)
webbrowser.open(f"{scheme}://{address}:{port}")
call_on_start = startup_server

View File

@ -1,2 +1,2 @@
# model_manager/__init__.py
from .download_models import download_model, DownloadModelStatus, DownloadStatusType, create_model_path, check_file_exists, track_download_progress, validate_model_subdirectory, validate_filename
from .download_models import download_model, DownloadModelStatus, DownloadStatusType, create_model_path, check_file_exists, track_download_progress, validate_filename

View File

@ -1,9 +1,10 @@
#NOTE: This was an experiment and WILL BE REMOVED
from __future__ import annotations
import aiohttp
import os
import traceback
import logging
from folder_paths import models_dir
from folder_paths import folder_names_and_paths, get_folder_paths
import re
from typing import Callable, Any, Optional, Awaitable, Dict
from enum import Enum
@ -17,6 +18,7 @@ class DownloadStatusType(Enum):
COMPLETED = "completed"
ERROR = "error"
@dataclass
class DownloadModelStatus():
status: str
@ -29,7 +31,7 @@ class DownloadModelStatus():
self.progress_percentage = progress_percentage
self.message = message
self.already_existed = already_existed
def to_dict(self) -> Dict[str, Any]:
return {
"status": self.status,
@ -38,102 +40,112 @@ class DownloadModelStatus():
"already_existed": self.already_existed
}
async def download_model(model_download_request: Callable[[str], Awaitable[aiohttp.ClientResponse]],
model_name: str,
model_url: str,
model_sub_directory: str,
model_name: str,
model_url: str,
model_directory: str,
folder_path: str,
progress_callback: Callable[[str, DownloadModelStatus], Awaitable[Any]],
progress_interval: float = 1.0) -> DownloadModelStatus:
"""
Download a model file from a given URL into the models directory.
Args:
model_download_request (Callable[[str], Awaitable[aiohttp.ClientResponse]]):
model_download_request (Callable[[str], Awaitable[aiohttp.ClientResponse]]):
A function that makes an HTTP request. This makes it easier to mock in unit tests.
model_name (str):
model_name (str):
The name of the model file to be downloaded. This will be the filename on disk.
model_url (str):
model_url (str):
The URL from which to download the model.
model_sub_directory (str):
The subdirectory within the main models directory where the model
model_directory (str):
The subdirectory within the main models directory where the model
should be saved (e.g., 'checkpoints', 'loras', etc.).
progress_callback (Callable[[str, DownloadModelStatus], Awaitable[Any]]):
progress_callback (Callable[[str, DownloadModelStatus], Awaitable[Any]]):
An asynchronous function to call with progress updates.
folder_path (str);
Path to which model folder should be used as the root.
Returns:
DownloadModelStatus: The result of the download operation.
"""
if not validate_model_subdirectory(model_sub_directory):
return DownloadModelStatus(
DownloadStatusType.ERROR,
0,
"Invalid model subdirectory",
False
)
if not validate_filename(model_name):
return DownloadModelStatus(
DownloadStatusType.ERROR,
DownloadStatusType.ERROR,
0,
"Invalid model name",
"Invalid model name",
False
)
file_path, relative_path = create_model_path(model_name, model_sub_directory, models_dir)
existing_file = await check_file_exists(file_path, model_name, progress_callback, relative_path)
if not model_directory in folder_names_and_paths:
return DownloadModelStatus(
DownloadStatusType.ERROR,
0,
"Invalid or unrecognized model directory. model_directory must be a known model type (eg 'checkpoints'). If you are seeing this error for a custom model type, ensure the relevant custom nodes are installed and working.",
False
)
if not folder_path in get_folder_paths(model_directory):
return DownloadModelStatus(
DownloadStatusType.ERROR,
0,
f"Invalid folder path '{folder_path}', does not match the list of known directories ({get_folder_paths(model_directory)}). If you're seeing this in the downloader UI, you may need to refresh the page.",
False
)
file_path = create_model_path(model_name, folder_path)
existing_file = await check_file_exists(file_path, model_name, progress_callback)
if existing_file:
return existing_file
try:
logging.info(f"Downloading {model_name} from {model_url}")
status = DownloadModelStatus(DownloadStatusType.PENDING, 0, f"Starting download of {model_name}", False)
await progress_callback(relative_path, status)
await progress_callback(model_name, status)
response = await model_download_request(model_url)
if response.status != 200:
error_message = f"Failed to download {model_name}. Status code: {response.status}"
logging.error(error_message)
status = DownloadModelStatus(DownloadStatusType.ERROR, 0, error_message, False)
await progress_callback(relative_path, status)
await progress_callback(model_name, status)
return DownloadModelStatus(DownloadStatusType.ERROR, 0, error_message, False)
return await track_download_progress(response, file_path, model_name, progress_callback, relative_path, progress_interval)
return await track_download_progress(response, file_path, model_name, progress_callback, progress_interval)
except Exception as e:
logging.error(f"Error in downloading model: {e}")
return await handle_download_error(e, model_name, progress_callback, relative_path)
return await handle_download_error(e, model_name, progress_callback)
def create_model_path(model_name: str, model_directory: str, models_base_dir: str) -> tuple[str, str]:
full_model_dir = os.path.join(models_base_dir, model_directory)
os.makedirs(full_model_dir, exist_ok=True)
file_path = os.path.join(full_model_dir, model_name)
def create_model_path(model_name: str, folder_path: str) -> tuple[str, str]:
os.makedirs(folder_path, exist_ok=True)
file_path = os.path.join(folder_path, model_name)
# Ensure the resulting path is still within the base directory
abs_file_path = os.path.abspath(file_path)
abs_base_dir = os.path.abspath(str(models_base_dir))
abs_base_dir = os.path.abspath(folder_path)
if os.path.commonprefix([abs_file_path, abs_base_dir]) != abs_base_dir:
raise Exception(f"Invalid model directory: {model_directory}/{model_name}")
raise Exception(f"Invalid model directory: {folder_path}/{model_name}")
return file_path
relative_path = '/'.join([model_directory, model_name])
return file_path, relative_path
async def check_file_exists(file_path: str,
model_name: str,
progress_callback: Callable[[str, DownloadModelStatus], Awaitable[Any]],
relative_path: str) -> Optional[DownloadModelStatus]:
async def check_file_exists(file_path: str,
model_name: str,
progress_callback: Callable[[str, DownloadModelStatus], Awaitable[Any]]
) -> Optional[DownloadModelStatus]:
if os.path.exists(file_path):
status = DownloadModelStatus(DownloadStatusType.COMPLETED, 100, f"{model_name} already exists", True)
await progress_callback(relative_path, status)
await progress_callback(model_name, status)
return status
return None
async def track_download_progress(response: aiohttp.ClientResponse,
file_path: str,
model_name: str,
progress_callback: Callable[[str, DownloadModelStatus], Awaitable[Any]],
relative_path: str,
async def track_download_progress(response: aiohttp.ClientResponse,
file_path: str,
model_name: str,
progress_callback: Callable[[str, DownloadModelStatus], Awaitable[Any]],
interval: float = 1.0) -> DownloadModelStatus:
try:
total_size = int(response.headers.get('Content-Length', 0))
@ -144,10 +156,11 @@ async def track_download_progress(response: aiohttp.ClientResponse,
nonlocal last_update_time
progress = (downloaded / total_size) * 100 if total_size > 0 else 0
status = DownloadModelStatus(DownloadStatusType.IN_PROGRESS, progress, f"Downloading {model_name}", False)
await progress_callback(relative_path, status)
await progress_callback(model_name, status)
last_update_time = time.time()
with open(file_path, 'wb') as f:
temp_file_path = file_path + '.tmp'
with open(temp_file_path, 'wb') as f:
chunk_iterator = response.content.iter_chunked(8192)
while True:
try:
@ -156,58 +169,39 @@ async def track_download_progress(response: aiohttp.ClientResponse,
break
f.write(chunk)
downloaded += len(chunk)
if time.time() - last_update_time >= interval:
await update_progress()
os.rename(temp_file_path, file_path)
await update_progress()
logging.info(f"Successfully downloaded {model_name}. Total downloaded: {downloaded}")
status = DownloadModelStatus(DownloadStatusType.COMPLETED, 100, f"Successfully downloaded {model_name}", False)
await progress_callback(relative_path, status)
await progress_callback(model_name, status)
return status
except Exception as e:
logging.error(f"Error in track_download_progress: {e}")
logging.error(traceback.format_exc())
return await handle_download_error(e, model_name, progress_callback, relative_path)
return await handle_download_error(e, model_name, progress_callback)
async def handle_download_error(e: Exception,
model_name: str,
progress_callback: Callable[[str, DownloadModelStatus], Any],
relative_path: str) -> DownloadModelStatus:
async def handle_download_error(e: Exception,
model_name: str,
progress_callback: Callable[[str, DownloadModelStatus], Any]
) -> DownloadModelStatus:
error_message = f"Error downloading {model_name}: {str(e)}"
status = DownloadModelStatus(DownloadStatusType.ERROR, 0, error_message, False)
await progress_callback(relative_path, status)
await progress_callback(model_name, status)
return status
def validate_model_subdirectory(model_subdirectory: str) -> bool:
"""
Validate that the model subdirectory is safe to install into.
Must not contain relative paths, nested paths or special characters
other than underscores and hyphens.
Args:
model_subdirectory (str): The subdirectory for the specific model type.
Returns:
bool: True if the subdirectory is safe, False otherwise.
"""
if len(model_subdirectory) > 50:
return False
if '..' in model_subdirectory or '/' in model_subdirectory:
return False
if not re.match(r'^[a-zA-Z0-9_-]+$', model_subdirectory):
return False
return True
def validate_filename(filename: str)-> bool:
"""
Validate a filename to ensure it's safe and doesn't contain any path traversal attempts.
Args:
filename (str): The filename to validate

View File

@ -861,7 +861,7 @@ class UNETLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "unet_name": (folder_paths.get_filename_list("diffusion_models"), ),
"weight_dtype": (["default", "fp8_e4m3fn", "fp8_e5m2"],)
"weight_dtype": (["default", "fp8_e4m3fn", "fp8_e4m3fn_fast", "fp8_e5m2"],)
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "load_unet"
@ -872,6 +872,9 @@ class UNETLoader:
model_options = {}
if weight_dtype == "fp8_e4m3fn":
model_options["dtype"] = torch.float8_e4m3fn
elif weight_dtype == "fp8_e4m3fn_fast":
model_options["dtype"] = torch.float8_e4m3fn
model_options["fp8_optimizations"] = True
elif weight_dtype == "fp8_e5m2":
model_options["dtype"] = torch.float8_e5m2

View File

@ -679,6 +679,7 @@ class PromptServer():
# Internal route. Should not be depended upon and is subject to change at any time.
# TODO(robinhuang): Move to internal route table class once we refactor PromptServer to pass around Websocket.
# NOTE: This was an experiment and WILL BE REMOVED
@routes.post("/internal/models/download")
async def download_handler(request):
async def report_progress(filename: str, status: DownloadModelStatus):
@ -689,10 +690,11 @@ class PromptServer():
data = await request.json()
url = data.get('url')
model_directory = data.get('model_directory')
folder_path = data.get('folder_path')
model_filename = data.get('model_filename')
progress_interval = data.get('progress_interval', 1.0) # In seconds, how often to report download progress.
if not url or not model_directory or not model_filename:
if not url or not model_directory or not model_filename or not folder_path:
return web.json_response({"status": "error", "message": "Missing URL or folder path or filename"}, status=400)
session = self.client_session
@ -700,7 +702,7 @@ class PromptServer():
logging.error("Client session is not initialized")
return web.Response(status=500)
task = asyncio.create_task(download_model(lambda url: session.get(url), model_filename, url, model_directory, report_progress, progress_interval))
task = asyncio.create_task(download_model(lambda url: session.get(url), model_filename, url, model_directory, folder_path, report_progress, progress_interval))
await task
return web.json_response(task.result().to_dict())
@ -817,6 +819,9 @@ class PromptServer():
await self.send(*msg)
async def start(self, address, port, verbose=True, call_on_start=None):
await self.start_multi_address([(address, port)], call_on_start=call_on_start)
async def start_multi_address(self, addresses, call_on_start=None):
runner = web.AppRunner(self.app, access_log=None)
await runner.setup()
ssl_ctx = None
@ -827,17 +832,26 @@ class PromptServer():
keyfile=args.tls_keyfile)
scheme = "https"
site = web.TCPSite(runner, address, port, ssl_context=ssl_ctx)
await site.start()
logging.info("Starting server\n")
for addr in addresses:
address = addr[0]
port = addr[1]
site = web.TCPSite(runner, address, port, ssl_context=ssl_ctx)
await site.start()
self.address = address
self.port = port
if not hasattr(self, 'address'):
self.address = address #TODO: remove this
self.port = port
if ':' in address:
address_print = "[{}]".format(address)
else:
address_print = address
logging.info("To see the GUI go to: {}://{}:{}".format(scheme, address_print, port))
if verbose:
logging.info("Starting server\n")
logging.info("To see the GUI go to: {}://{}:{}".format(scheme, address, port))
if call_on_start is not None:
call_on_start(scheme, address, port)
call_on_start(scheme, self.address, self.port)
def add_on_prompt_handler(self, handler):
self.on_prompt_handlers.append(handler)

View File

@ -1,10 +1,17 @@
import pytest
import tempfile
import aiohttp
from aiohttp import ClientResponse
import itertools
import os
import os
from unittest.mock import AsyncMock, patch, MagicMock
from model_filemanager import download_model, validate_model_subdirectory, track_download_progress, create_model_path, check_file_exists, DownloadStatusType, DownloadModelStatus, validate_filename
from model_filemanager import download_model, track_download_progress, create_model_path, check_file_exists, DownloadStatusType, DownloadModelStatus, validate_filename
import folder_paths
@pytest.fixture
def temp_dir():
with tempfile.TemporaryDirectory() as tmpdirname:
yield tmpdirname
class AsyncIteratorMock:
"""
@ -42,7 +49,7 @@ class ContentMock:
return AsyncIteratorMock(self.chunks)
@pytest.mark.asyncio
async def test_download_model_success():
async def test_download_model_success(temp_dir):
mock_response = AsyncMock(spec=aiohttp.ClientResponse)
mock_response.status = 200
mock_response.headers = {'Content-Length': '1000'}
@ -53,15 +60,13 @@ async def test_download_model_success():
mock_make_request = AsyncMock(return_value=mock_response)
mock_progress_callback = AsyncMock()
# Mock file operations
mock_open = MagicMock()
mock_file = MagicMock()
mock_open.return_value.__enter__.return_value = mock_file
time_values = itertools.count(0, 0.1)
with patch('model_filemanager.create_model_path', return_value=('models/checkpoints/model.sft', 'checkpoints/model.sft')), \
fake_paths = {'checkpoints': ([temp_dir], folder_paths.supported_pt_extensions)}
with patch('model_filemanager.create_model_path', return_value=('models/checkpoints/model.sft', 'model.sft')), \
patch('model_filemanager.check_file_exists', return_value=None), \
patch('builtins.open', mock_open), \
patch('folder_paths.folder_names_and_paths', fake_paths), \
patch('time.time', side_effect=time_values): # Simulate time passing
result = await download_model(
@ -69,6 +74,7 @@ async def test_download_model_success():
'model.sft',
'http://example.com/model.sft',
'checkpoints',
temp_dir,
mock_progress_callback
)
@ -83,44 +89,48 @@ async def test_download_model_success():
# Check initial call
mock_progress_callback.assert_any_call(
'checkpoints/model.sft',
'model.sft',
DownloadModelStatus(DownloadStatusType.PENDING, 0, "Starting download of model.sft", False)
)
# Check final call
mock_progress_callback.assert_any_call(
'checkpoints/model.sft',
'model.sft',
DownloadModelStatus(DownloadStatusType.COMPLETED, 100, "Successfully downloaded model.sft", False)
)
# Verify file writing
mock_file.write.assert_any_call(b'a' * 500)
mock_file.write.assert_any_call(b'b' * 300)
mock_file.write.assert_any_call(b'c' * 200)
mock_file_path = os.path.join(temp_dir, 'model.sft')
assert os.path.exists(mock_file_path)
with open(mock_file_path, 'rb') as mock_file:
assert mock_file.read() == b''.join(chunks)
os.remove(mock_file_path)
# Verify request was made
mock_make_request.assert_called_once_with('http://example.com/model.sft')
@pytest.mark.asyncio
async def test_download_model_url_request_failure():
async def test_download_model_url_request_failure(temp_dir):
# Mock dependencies
mock_response = AsyncMock(spec=ClientResponse)
mock_response.status = 404 # Simulate a "Not Found" error
mock_get = AsyncMock(return_value=mock_response)
mock_progress_callback = AsyncMock()
fake_paths = {'checkpoints': ([temp_dir], folder_paths.supported_pt_extensions)}
# Mock the create_model_path function
with patch('model_filemanager.create_model_path', return_value=('/mock/path/model.safetensors', 'mock/path/model.safetensors')):
# Mock the check_file_exists function to return None (file doesn't exist)
with patch('model_filemanager.check_file_exists', return_value=None):
# Call the function
result = await download_model(
mock_get,
'model.safetensors',
'http://example.com/model.safetensors',
'mock_directory',
mock_progress_callback
)
with patch('model_filemanager.create_model_path', return_value='/mock/path/model.safetensors'), \
patch('model_filemanager.check_file_exists', return_value=None), \
patch('folder_paths.folder_names_and_paths', fake_paths):
# Call the function
result = await download_model(
mock_get,
'model.safetensors',
'http://example.com/model.safetensors',
'checkpoints',
temp_dir,
mock_progress_callback
)
# Assert the expected behavior
assert isinstance(result, DownloadModelStatus)
@ -130,7 +140,7 @@ async def test_download_model_url_request_failure():
# Check that progress_callback was called with the correct arguments
mock_progress_callback.assert_any_call(
'mock_directory/model.safetensors',
'model.safetensors',
DownloadModelStatus(
status=DownloadStatusType.PENDING,
progress_percentage=0,
@ -139,7 +149,7 @@ async def test_download_model_url_request_failure():
)
)
mock_progress_callback.assert_called_with(
'mock_directory/model.safetensors',
'model.safetensors',
DownloadModelStatus(
status=DownloadStatusType.ERROR,
progress_percentage=0,
@ -153,98 +163,125 @@ async def test_download_model_url_request_failure():
@pytest.mark.asyncio
async def test_download_model_invalid_model_subdirectory():
mock_make_request = AsyncMock()
mock_progress_callback = AsyncMock()
result = await download_model(
mock_make_request,
'model.sft',
'http://example.com/model.sft',
'../bad_path',
'../bad_path',
mock_progress_callback
)
# Assert the result
assert isinstance(result, DownloadModelStatus)
assert result.message == 'Invalid model subdirectory'
assert result.message.startswith('Invalid or unrecognized model directory')
assert result.status == 'error'
assert result.already_existed is False
@pytest.mark.asyncio
async def test_download_model_invalid_folder_path():
mock_make_request = AsyncMock()
mock_progress_callback = AsyncMock()
result = await download_model(
mock_make_request,
'model.sft',
'http://example.com/model.sft',
'checkpoints',
'invalid_path',
mock_progress_callback
)
# Assert the result
assert isinstance(result, DownloadModelStatus)
assert result.message.startswith("Invalid folder path")
assert result.status == 'error'
assert result.already_existed is False
# For create_model_path function
def test_create_model_path(tmp_path, monkeypatch):
mock_models_dir = tmp_path / "models"
monkeypatch.setattr('folder_paths.models_dir', str(mock_models_dir))
model_name = "test_model.sft"
model_directory = "test_dir"
file_path, relative_path = create_model_path(model_name, model_directory, mock_models_dir)
assert file_path == str(mock_models_dir / model_directory / model_name)
assert relative_path == f"{model_directory}/{model_name}"
model_name = "model.safetensors"
folder_path = os.path.join(tmp_path, "mock_dir")
file_path = create_model_path(model_name, folder_path)
assert file_path == os.path.join(folder_path, "model.safetensors")
assert os.path.exists(os.path.dirname(file_path))
with pytest.raises(Exception, match="Invalid model directory"):
create_model_path("../path_traversal.safetensors", folder_path)
with pytest.raises(Exception, match="Invalid model directory"):
create_model_path("/etc/some_root_path", folder_path)
@pytest.mark.asyncio
async def test_check_file_exists_when_file_exists(tmp_path):
file_path = tmp_path / "existing_model.sft"
file_path.touch() # Create an empty file
mock_callback = AsyncMock()
result = await check_file_exists(str(file_path), "existing_model.sft", mock_callback, "test/existing_model.sft")
result = await check_file_exists(str(file_path), "existing_model.sft", mock_callback)
assert result is not None
assert result.status == "completed"
assert result.message == "existing_model.sft already exists"
assert result.already_existed is True
mock_callback.assert_called_once_with(
"test/existing_model.sft",
"existing_model.sft",
DownloadModelStatus(DownloadStatusType.COMPLETED, 100, "existing_model.sft already exists", already_existed=True)
)
@pytest.mark.asyncio
async def test_check_file_exists_when_file_does_not_exist(tmp_path):
file_path = tmp_path / "non_existing_model.sft"
mock_callback = AsyncMock()
result = await check_file_exists(str(file_path), "non_existing_model.sft", mock_callback, "test/non_existing_model.sft")
result = await check_file_exists(str(file_path), "non_existing_model.sft", mock_callback)
assert result is None
mock_callback.assert_not_called()
@pytest.mark.asyncio
async def test_track_download_progress_no_content_length():
async def test_track_download_progress_no_content_length(temp_dir):
mock_response = AsyncMock(spec=aiohttp.ClientResponse)
mock_response.headers = {} # No Content-Length header
mock_response.content.iter_chunked.return_value = AsyncIteratorMock([b'a' * 500, b'b' * 500])
chunks = [b'a' * 500, b'b' * 500]
mock_response.content.iter_chunked.return_value = AsyncIteratorMock(chunks)
mock_callback = AsyncMock()
mock_open = MagicMock(return_value=MagicMock())
with patch('builtins.open', mock_open):
result = await track_download_progress(
mock_response, '/mock/path/model.sft', 'model.sft',
mock_callback, 'models/model.sft', interval=0.1
)
full_path = os.path.join(temp_dir, 'model.sft')
result = await track_download_progress(
mock_response, full_path, 'model.sft',
mock_callback, interval=0.1
)
assert result.status == "completed"
assert os.path.exists(full_path)
with open(full_path, 'rb') as f:
assert f.read() == b''.join(chunks)
os.remove(full_path)
# Check that progress was reported even without knowing the total size
mock_callback.assert_any_call(
'models/model.sft',
'model.sft',
DownloadModelStatus(DownloadStatusType.IN_PROGRESS, 0, "Downloading model.sft", already_existed=False)
)
@pytest.mark.asyncio
async def test_track_download_progress_interval():
async def test_track_download_progress_interval(temp_dir):
mock_response = AsyncMock(spec=aiohttp.ClientResponse)
mock_response.headers = {'Content-Length': '1000'}
mock_response.content.iter_chunked.return_value = AsyncIteratorMock([b'a' * 100] * 10)
chunks = [b'a' * 100] * 10
mock_response.content.iter_chunked.return_value = AsyncIteratorMock(chunks)
mock_callback = AsyncMock()
mock_open = MagicMock(return_value=MagicMock())
@ -253,18 +290,18 @@ async def test_track_download_progress_interval():
mock_time = MagicMock()
mock_time.side_effect = [i * 0.5 for i in range(30)] # This should be enough for 10 chunks
with patch('builtins.open', mock_open), \
patch('time.time', mock_time):
await track_download_progress(
mock_response, '/mock/path/model.sft', 'model.sft',
mock_callback, 'models/model.sft', interval=1.0
)
full_path = os.path.join(temp_dir, 'model.sft')
# Print out the actual call count and the arguments of each call for debugging
print(f"mock_callback was called {mock_callback.call_count} times")
for i, call in enumerate(mock_callback.call_args_list):
args, kwargs = call
print(f"Call {i + 1}: {args[1].status}, Progress: {args[1].progress_percentage:.2f}%")
with patch('time.time', mock_time):
await track_download_progress(
mock_response, full_path, 'model.sft',
mock_callback, interval=1.0
)
assert os.path.exists(full_path)
with open(full_path, 'rb') as f:
assert f.read() == b''.join(chunks)
os.remove(full_path)
# Assert that progress was updated at least 3 times (start, at least one interval, and end)
assert mock_callback.call_count >= 3, f"Expected at least 3 calls, but got {mock_callback.call_count}"
@ -279,27 +316,6 @@ async def test_track_download_progress_interval():
assert last_call[0][1].status == "completed"
assert last_call[0][1].progress_percentage == 100
def test_valid_subdirectory():
assert validate_model_subdirectory("valid-model123") is True
def test_subdirectory_too_long():
assert validate_model_subdirectory("a" * 51) is False
def test_subdirectory_with_double_dots():
assert validate_model_subdirectory("model/../unsafe") is False
def test_subdirectory_with_slash():
assert validate_model_subdirectory("model/unsafe") is False
def test_subdirectory_with_special_characters():
assert validate_model_subdirectory("model@unsafe") is False
def test_subdirectory_with_underscore_and_dash():
assert validate_model_subdirectory("valid_model-name") is True
def test_empty_subdirectory():
assert validate_model_subdirectory("") is False
@pytest.mark.parametrize("filename, expected", [
("valid_model.safetensors", True),
("valid_model.sft", True),

792
web/assets/GraphView-BGt8GmeB.css generated vendored Normal file
View File

@ -0,0 +1,792 @@
.editable-text[data-v-54da6fc9] {
display: inline;
}
.editable-text input[data-v-54da6fc9] {
width: 100%;
box-sizing: border-box;
}
.group-title-editor.node-title-editor[data-v-fc3f26e3] {
z-index: 9999;
padding: 0.25rem;
}
[data-v-fc3f26e3] .editable-text {
width: 100%;
height: 100%;
}
[data-v-fc3f26e3] .editable-text input {
width: 100%;
height: 100%;
/* Override the default font size */
font-size: inherit;
}
.side-bar-button-icon {
font-size: var(--sidebar-icon-size) !important;
}
.side-bar-button-selected .side-bar-button-icon {
font-size: var(--sidebar-icon-size) !important;
font-weight: bold;
}
.side-bar-button[data-v-caa3ee9c] {
width: var(--sidebar-width);
height: var(--sidebar-width);
border-radius: 0;
}
.comfyui-body-left .side-bar-button.side-bar-button-selected[data-v-caa3ee9c],
.comfyui-body-left .side-bar-button.side-bar-button-selected[data-v-caa3ee9c]:hover {
border-left: 4px solid var(--p-button-text-primary-color);
}
.comfyui-body-right .side-bar-button.side-bar-button-selected[data-v-caa3ee9c],
.comfyui-body-right .side-bar-button.side-bar-button-selected[data-v-caa3ee9c]:hover {
border-right: 4px solid var(--p-button-text-primary-color);
}
:root {
--sidebar-width: 64px;
--sidebar-icon-size: 1.5rem;
}
:root .small-sidebar {
--sidebar-width: 40px;
--sidebar-icon-size: 1rem;
}
.side-tool-bar-container[data-v-4da64512] {
display: flex;
flex-direction: column;
align-items: center;
pointer-events: auto;
width: var(--sidebar-width);
height: 100%;
background-color: var(--comfy-menu-bg);
color: var(--fg-color);
}
.side-tool-bar-end[data-v-4da64512] {
align-self: flex-end;
margin-top: auto;
}
.sidebar-content-container[data-v-4da64512] {
height: 100%;
overflow-y: auto;
}
.p-splitter-gutter {
pointer-events: auto;
}
.gutter-hidden {
display: none !important;
}
.side-bar-panel[data-v-b9df3042] {
background-color: var(--bg-color);
pointer-events: auto;
}
.splitter-overlay[data-v-b9df3042] {
width: 100%;
height: 100%;
position: absolute;
top: 0;
left: 0;
background-color: transparent;
pointer-events: none;
/* Set it the same as the ComfyUI menu */
/* Note: Lite-graph DOM widgets have the same z-index as the node id, so
999 should be sufficient to make sure splitter overlays on node's DOM
widgets */
z-index: 999;
border: none;
}
._content[data-v-e7b35fd9] {
display: flex;
flex-direction: column
}
._content[data-v-e7b35fd9] > :not([hidden]) ~ :not([hidden]) {
--tw-space-y-reverse: 0;
margin-top: calc(0.5rem * calc(1 - var(--tw-space-y-reverse)));
margin-bottom: calc(0.5rem * var(--tw-space-y-reverse))
}
._footer[data-v-e7b35fd9] {
display: flex;
flex-direction: column;
align-items: flex-end;
padding-top: 1rem
}
[data-v-37f672ab] .highlight {
background-color: var(--p-primary-color);
color: var(--p-primary-contrast-color);
font-weight: bold;
border-radius: 0.25rem;
padding: 0rem 0.125rem;
margin: -0.125rem 0.125rem;
}
.slot_row[data-v-ff07c900] {
padding: 2px;
}
/* Original N-Sidebar styles */
._sb_dot[data-v-ff07c900] {
width: 8px;
height: 8px;
border-radius: 50%;
background-color: grey;
}
.node_header[data-v-ff07c900] {
line-height: 1;
padding: 8px 13px 7px;
margin-bottom: 5px;
font-size: 15px;
text-wrap: nowrap;
overflow: hidden;
display: flex;
align-items: center;
}
.headdot[data-v-ff07c900] {
width: 10px;
height: 10px;
float: inline-start;
margin-right: 8px;
}
.IMAGE[data-v-ff07c900] {
background-color: #64b5f6;
}
.VAE[data-v-ff07c900] {
background-color: #ff6e6e;
}
.LATENT[data-v-ff07c900] {
background-color: #ff9cf9;
}
.MASK[data-v-ff07c900] {
background-color: #81c784;
}
.CONDITIONING[data-v-ff07c900] {
background-color: #ffa931;
}
.CLIP[data-v-ff07c900] {
background-color: #ffd500;
}
.MODEL[data-v-ff07c900] {
background-color: #b39ddb;
}
.CONTROL_NET[data-v-ff07c900] {
background-color: #a5d6a7;
}
._sb_node_preview[data-v-ff07c900] {
background-color: var(--comfy-menu-bg);
font-family: 'Open Sans', sans-serif;
font-size: small;
color: var(--descrip-text);
border: 1px solid var(--descrip-text);
min-width: 300px;
width: -moz-min-content;
width: min-content;
height: -moz-fit-content;
height: fit-content;
z-index: 9999;
border-radius: 12px;
overflow: hidden;
font-size: 12px;
padding-bottom: 10px;
}
._sb_node_preview ._sb_description[data-v-ff07c900] {
margin: 10px;
padding: 6px;
background: var(--border-color);
border-radius: 5px;
font-style: italic;
font-weight: 500;
font-size: 0.9rem;
word-break: break-word;
}
._sb_table[data-v-ff07c900] {
display: grid;
grid-column-gap: 10px;
/* Spazio tra le colonne */
width: 100%;
/* Imposta la larghezza della tabella al 100% del contenitore */
}
._sb_row[data-v-ff07c900] {
display: grid;
grid-template-columns: 10px 1fr 1fr 1fr 10px;
grid-column-gap: 10px;
align-items: center;
padding-left: 9px;
padding-right: 9px;
}
._sb_row_string[data-v-ff07c900] {
grid-template-columns: 10px 1fr 1fr 10fr 1fr;
}
._sb_col[data-v-ff07c900] {
border: 0px solid #000;
display: flex;
align-items: flex-end;
flex-direction: row-reverse;
flex-wrap: nowrap;
align-content: flex-start;
justify-content: flex-end;
}
._sb_inherit[data-v-ff07c900] {
display: inherit;
}
._long_field[data-v-ff07c900] {
background: var(--bg-color);
border: 2px solid var(--border-color);
margin: 5px 5px 0 5px;
border-radius: 10px;
line-height: 1.7;
text-wrap: nowrap;
}
._sb_arrow[data-v-ff07c900] {
color: var(--fg-color);
}
._sb_preview_badge[data-v-ff07c900] {
text-align: center;
background: var(--comfy-input-bg);
font-weight: bold;
color: var(--error-text);
}
.comfy-vue-node-search-container[data-v-2d409367] {
display: flex;
width: 100%;
min-width: 26rem;
align-items: center;
justify-content: center;
}
.comfy-vue-node-search-container[data-v-2d409367] * {
pointer-events: auto;
}
.comfy-vue-node-preview-container[data-v-2d409367] {
position: absolute;
left: -350px;
top: 50px;
}
.comfy-vue-node-search-box[data-v-2d409367] {
z-index: 10;
flex-grow: 1;
}
._filter-button[data-v-2d409367] {
z-index: 10;
}
._dialog[data-v-2d409367] {
min-width: 26rem;
}
.invisible-dialog-root {
width: 60%;
min-width: 24rem;
max-width: 48rem;
border: 0 !important;
background-color: transparent !important;
margin-top: 25vh;
margin-left: 400px;
}
@media all and (max-width: 768px) {
.invisible-dialog-root {
margin-left: 0px;
}
}
.node-search-box-dialog-mask {
align-items: flex-start !important;
}
.node-tooltip[data-v-0a4402f9] {
background: var(--comfy-input-bg);
border-radius: 5px;
box-shadow: 0 0 5px rgba(0, 0, 0, 0.4);
color: var(--input-text);
font-family: sans-serif;
left: 0;
max-width: 30vw;
padding: 4px 8px;
position: absolute;
top: 0;
transform: translate(5px, calc(-100% - 5px));
white-space: pre-wrap;
z-index: 99999;
}
.p-buttongroup-vertical[data-v-ce8bd6ac] {
display: flex;
flex-direction: column;
border-radius: var(--p-button-border-radius);
overflow: hidden;
border: 1px solid var(--p-panel-border-color);
}
.p-buttongroup-vertical .p-button[data-v-ce8bd6ac] {
margin: 0;
border-radius: 0;
}
.comfy-image-wrap[data-v-9bc23daf] {
display: contents;
}
.comfy-image-blur[data-v-9bc23daf] {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
-o-object-fit: cover;
object-fit: cover;
}
.comfy-image-main[data-v-9bc23daf] {
width: 100%;
height: 100%;
-o-object-fit: cover;
object-fit: cover;
-o-object-position: center;
object-position: center;
z-index: 1;
}
.contain .comfy-image-wrap[data-v-9bc23daf] {
position: relative;
width: 100%;
height: 100%;
}
.contain .comfy-image-main[data-v-9bc23daf] {
-o-object-fit: contain;
object-fit: contain;
-webkit-backdrop-filter: blur(10px);
backdrop-filter: blur(10px);
position: absolute;
}
.broken-image-placeholder[data-v-9bc23daf] {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
width: 100%;
height: 100%;
margin: 2rem;
}
.broken-image-placeholder i[data-v-9bc23daf] {
font-size: 3rem;
margin-bottom: 0.5rem;
}
.result-container[data-v-d9c060ae] {
width: 100%;
height: 100%;
aspect-ratio: 1 / 1;
overflow: hidden;
position: relative;
display: flex;
justify-content: center;
align-items: center;
}
.image-preview-mask[data-v-d9c060ae] {
position: absolute;
left: 50%;
top: 50%;
transform: translate(-50%, -50%);
display: flex;
align-items: center;
justify-content: center;
opacity: 0;
transition: opacity 0.3s ease;
z-index: 1;
}
.result-container:hover .image-preview-mask[data-v-d9c060ae] {
opacity: 1;
}
.task-result-preview[data-v-d4c8a1fe] {
aspect-ratio: 1 / 1;
overflow: hidden;
display: flex;
justify-content: center;
align-items: center;
width: 100%;
height: 100%;
}
.task-result-preview i[data-v-d4c8a1fe],
.task-result-preview span[data-v-d4c8a1fe] {
font-size: 2rem;
}
.task-item[data-v-d4c8a1fe] {
display: flex;
flex-direction: column;
border-radius: 4px;
overflow: hidden;
position: relative;
}
.task-item-details[data-v-d4c8a1fe] {
position: absolute;
bottom: 0;
padding: 0.6rem;
display: flex;
justify-content: space-between;
align-items: center;
width: 100%;
z-index: 1;
}
.task-node-link[data-v-d4c8a1fe] {
padding: 2px;
}
/* In dark mode, transparent background color for tags is not ideal for tags that
are floating on top of images. */
.tag-wrapper[data-v-d4c8a1fe] {
background-color: var(--p-primary-contrast-color);
border-radius: 6px;
display: inline-flex;
}
.node-name-tag[data-v-d4c8a1fe] {
word-break: break-all;
}
.status-tag-group[data-v-d4c8a1fe] {
display: flex;
flex-direction: column;
}
.progress-preview-img[data-v-d4c8a1fe] {
width: 100%;
height: 100%;
-o-object-fit: cover;
object-fit: cover;
-o-object-position: center;
object-position: center;
}
/* PrimeVue's galleria teleports the fullscreen gallery out of subtree so we
cannot use scoped style here. */
img.galleria-image {
max-width: 100vw;
max-height: 100vh;
-o-object-fit: contain;
object-fit: contain;
}
.p-galleria-close-button {
/* Set z-index so the close button doesn't get hidden behind the image when image is large */
z-index: 1;
}
.comfy-vue-side-bar-container[data-v-1b0a8fe3] {
display: flex;
flex-direction: column;
height: 100%;
overflow: hidden;
}
.comfy-vue-side-bar-header[data-v-1b0a8fe3] {
flex-shrink: 0;
border-left: none;
border-right: none;
border-top: none;
border-radius: 0;
padding: 0.25rem 1rem;
min-height: 2.5rem;
}
.comfy-vue-side-bar-header-span[data-v-1b0a8fe3] {
font-size: small;
}
.comfy-vue-side-bar-body[data-v-1b0a8fe3] {
flex-grow: 1;
overflow: auto;
scrollbar-width: thin;
scrollbar-color: transparent transparent;
}
.comfy-vue-side-bar-body[data-v-1b0a8fe3]::-webkit-scrollbar {
width: 1px;
}
.comfy-vue-side-bar-body[data-v-1b0a8fe3]::-webkit-scrollbar-thumb {
background-color: transparent;
}
.scroll-container[data-v-08fa89b1] {
height: 100%;
overflow-y: auto;
}
.queue-grid[data-v-08fa89b1] {
display: grid;
grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
padding: 0.5rem;
gap: 0.5rem;
}
.tree-node[data-v-633e27ab] {
width: 100%;
display: flex;
align-items: center;
justify-content: space-between;
}
.leaf-count-badge[data-v-633e27ab] {
margin-left: 0.5rem;
}
.node-content[data-v-633e27ab] {
display: flex;
align-items: center;
flex-grow: 1;
}
.leaf-label[data-v-633e27ab] {
margin-left: 0.5rem;
}
[data-v-633e27ab] .editable-text span {
word-break: break-all;
}
[data-v-bd7bae90] .tree-explorer-node-label {
width: 100%;
display: flex;
align-items: center;
margin-left: var(--p-tree-node-gap);
flex-grow: 1;
}
/*
* The following styles are necessary to avoid layout shift when dragging nodes over folders.
* By setting the position to relative on the parent and using an absolutely positioned pseudo-element,
* we can create a visual indicator for the drop target without affecting the layout of other elements.
*/
[data-v-bd7bae90] .p-tree-node-content:has(.tree-folder) {
position: relative;
}
[data-v-bd7bae90] .p-tree-node-content:has(.tree-folder.can-drop)::after {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
border: 1px solid var(--p-content-color);
pointer-events: none;
}
.node-lib-node-container[data-v-90dfee08] {
height: 100%;
width: 100%
}
.p-selectbutton .p-button[data-v-91077f2a] {
padding: 0.5rem;
}
.p-selectbutton .p-button .pi[data-v-91077f2a] {
font-size: 1.5rem;
}
.field[data-v-91077f2a] {
display: flex;
flex-direction: column;
gap: 0.5rem;
}
.color-picker-container[data-v-91077f2a] {
display: flex;
align-items: center;
gap: 0.5rem;
}
.node-lib-filter-popup {
margin-left: -13px;
}
[data-v-f6a7371a] .comfy-vue-side-bar-body {
background: var(--p-tree-background);
}
[data-v-f6a7371a] .node-lib-bookmark-tree-explorer {
padding-bottom: 2px;
}
[data-v-f6a7371a] .p-divider {
margin: var(--comfy-tree-explorer-item-padding) 0px;
}
.model_preview[data-v-32e6c4d9] {
background-color: var(--comfy-menu-bg);
font-family: 'Open Sans', sans-serif;
color: var(--descrip-text);
border: 1px solid var(--descrip-text);
min-width: 300px;
max-width: 500px;
width: -moz-fit-content;
width: fit-content;
height: -moz-fit-content;
height: fit-content;
z-index: 9999;
border-radius: 12px;
overflow: hidden;
font-size: 12px;
padding: 10px;
}
.model_preview_image[data-v-32e6c4d9] {
margin: auto;
width: -moz-fit-content;
width: fit-content;
}
.model_preview_image img[data-v-32e6c4d9] {
max-width: 100%;
max-height: 150px;
-o-object-fit: contain;
object-fit: contain;
}
.model_preview_title[data-v-32e6c4d9] {
font-weight: bold;
text-align: center;
font-size: 14px;
}
.model_preview_top_container[data-v-32e6c4d9] {
text-align: center;
line-height: 0.5;
}
.model_preview_filename[data-v-32e6c4d9],
.model_preview_author[data-v-32e6c4d9],
.model_preview_architecture[data-v-32e6c4d9] {
display: inline-block;
text-align: center;
margin: 5px;
font-size: 10px;
}
.model_preview_prefix[data-v-32e6c4d9] {
font-weight: bold;
}
.model-lib-model-icon-container[data-v-70b69131] {
display: inline-block;
position: relative;
left: 0;
height: 1.5rem;
vertical-align: top;
width: 0px;
}
.model-lib-model-icon[data-v-70b69131] {
background-size: cover;
background-position: center;
display: inline-block;
position: relative;
left: -2.5rem;
height: 2rem;
width: 2rem;
vertical-align: top;
}
.pi-fake-spacer {
height: 1px;
width: 16px;
}
[data-v-74b01bce] .comfy-vue-side-bar-body {
background: var(--p-tree-background);
}
[data-v-d2d58252] .comfy-vue-side-bar-body {
background: var(--p-tree-background);
}
[data-v-84e785b8] .p-togglebutton::before {
display: none
}
[data-v-84e785b8] .p-togglebutton {
position: relative;
flex-shrink: 0;
border-radius: 0px;
background-color: transparent;
padding-left: 0.5rem;
padding-right: 0.5rem
}
[data-v-84e785b8] .p-togglebutton.p-togglebutton-checked {
border-bottom-width: 2px;
border-bottom-color: var(--p-button-text-primary-color)
}
[data-v-84e785b8] .p-togglebutton-checked .close-button,[data-v-84e785b8] .p-togglebutton:hover .close-button {
visibility: visible
}
.status-indicator[data-v-84e785b8] {
position: absolute;
font-weight: 700;
font-size: 1.5rem;
top: 50%;
left: 50%;
transform: translate(-50%, -50%)
}
[data-v-84e785b8] .p-togglebutton:hover .status-indicator {
display: none
}
[data-v-84e785b8] .p-togglebutton .close-button {
visibility: hidden
}
.top-menubar[data-v-2ec1b620] .p-menubar-item-link svg {
display: none;
}
[data-v-2ec1b620] .p-menubar-submenu.dropdown-direction-up {
top: auto;
bottom: 100%;
flex-direction: column-reverse;
}
.keybinding-tag[data-v-2ec1b620] {
background: var(--p-content-hover-background);
border-color: var(--p-content-border-color);
border-style: solid;
}
[data-v-713442be] .p-inputtext {
border-top-left-radius: 0;
border-bottom-left-radius: 0;
}
.comfyui-queue-button[data-v-fcd3efcd] .p-splitbutton-dropdown {
border-top-right-radius: 0;
border-bottom-right-radius: 0;
}
.actionbar[data-v-bc6c78dd] {
pointer-events: all;
position: fixed;
z-index: 1000;
}
.actionbar.is-docked[data-v-bc6c78dd] {
position: static;
border-style: none;
background-color: transparent;
padding: 0px;
}
.actionbar.is-dragging[data-v-bc6c78dd] {
-webkit-user-select: none;
-moz-user-select: none;
user-select: none;
}
[data-v-bc6c78dd] .p-panel-content {
padding: 0.25rem;
}
[data-v-bc6c78dd] .p-panel-header {
display: none;
}
.comfyui-menu[data-v-b13fdc92] {
width: 100vw;
background: var(--comfy-menu-bg);
color: var(--fg-color);
font-family: Arial, Helvetica, sans-serif;
font-size: 0.8em;
box-sizing: border-box;
z-index: 1000;
order: 0;
grid-column: 1/-1;
max-height: 90vh;
}
.comfyui-menu.dropzone[data-v-b13fdc92] {
background: var(--p-highlight-background);
}
.comfyui-menu.dropzone-active[data-v-b13fdc92] {
background: var(--p-highlight-background-focus);
}
.comfyui-logo[data-v-b13fdc92] {
font-size: 1.2em;
-webkit-user-select: none;
-moz-user-select: none;
user-select: none;
cursor: default;
}

17465
web/assets/GraphView-CVV2XJjS.js generated vendored Normal file

File diff suppressed because one or more lines are too long

1
web/assets/GraphView-CVV2XJjS.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

3142
web/assets/GraphView-DN9xGvF3.js generated vendored

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

158
web/assets/GraphView-DXU9yRen.css generated vendored
View File

@ -1,158 +0,0 @@
.group-title-editor.node-title-editor[data-v-fc3f26e3] {
z-index: 9999;
padding: 0.25rem;
}
[data-v-fc3f26e3] .editable-text {
width: 100%;
height: 100%;
}
[data-v-fc3f26e3] .editable-text input {
width: 100%;
height: 100%;
/* Override the default font size */
font-size: inherit;
}
.side-bar-button-icon {
font-size: var(--sidebar-icon-size) !important;
}
.side-bar-button-selected .side-bar-button-icon {
font-size: var(--sidebar-icon-size) !important;
font-weight: bold;
}
.side-bar-button[data-v-caa3ee9c] {
width: var(--sidebar-width);
height: var(--sidebar-width);
border-radius: 0;
}
.comfyui-body-left .side-bar-button.side-bar-button-selected[data-v-caa3ee9c],
.comfyui-body-left .side-bar-button.side-bar-button-selected[data-v-caa3ee9c]:hover {
border-left: 4px solid var(--p-button-text-primary-color);
}
.comfyui-body-right .side-bar-button.side-bar-button-selected[data-v-caa3ee9c],
.comfyui-body-right .side-bar-button.side-bar-button-selected[data-v-caa3ee9c]:hover {
border-right: 4px solid var(--p-button-text-primary-color);
}
:root {
--sidebar-width: 64px;
--sidebar-icon-size: 1.5rem;
}
:root .small-sidebar {
--sidebar-width: 40px;
--sidebar-icon-size: 1rem;
}
.side-tool-bar-container[data-v-ed7a1148] {
display: flex;
flex-direction: column;
align-items: center;
pointer-events: auto;
width: var(--sidebar-width);
height: 100%;
background-color: var(--comfy-menu-bg);
color: var(--fg-color);
}
.side-tool-bar-end[data-v-ed7a1148] {
align-self: flex-end;
margin-top: auto;
}
.sidebar-content-container[data-v-ed7a1148] {
height: 100%;
overflow-y: auto;
}
.p-splitter-gutter {
pointer-events: auto;
}
.gutter-hidden {
display: none !important;
}
.side-bar-panel[data-v-edca8328] {
background-color: var(--bg-color);
pointer-events: auto;
}
.splitter-overlay[data-v-edca8328] {
width: 100%;
height: 100%;
position: absolute;
top: 0;
left: 0;
background-color: transparent;
pointer-events: none;
/* Set it the same as the ComfyUI menu */
/* Note: Lite-graph DOM widgets have the same z-index as the node id, so
999 should be sufficient to make sure splitter overlays on node's DOM
widgets */
z-index: 999;
border: none;
}
[data-v-37f672ab] .highlight {
background-color: var(--p-primary-color);
color: var(--p-primary-contrast-color);
font-weight: bold;
border-radius: 0.25rem;
padding: 0rem 0.125rem;
margin: -0.125rem 0.125rem;
}
.comfy-vue-node-search-container[data-v-2d409367] {
display: flex;
width: 100%;
min-width: 26rem;
align-items: center;
justify-content: center;
}
.comfy-vue-node-search-container[data-v-2d409367] * {
pointer-events: auto;
}
.comfy-vue-node-preview-container[data-v-2d409367] {
position: absolute;
left: -350px;
top: 50px;
}
.comfy-vue-node-search-box[data-v-2d409367] {
z-index: 10;
flex-grow: 1;
}
._filter-button[data-v-2d409367] {
z-index: 10;
}
._dialog[data-v-2d409367] {
min-width: 26rem;
}
.invisible-dialog-root {
width: 30%;
min-width: 24rem;
max-width: 48rem;
border: 0 !important;
background-color: transparent !important;
margin-top: 25vh;
}
.node-search-box-dialog-mask {
align-items: flex-start !important;
}
.node-tooltip[data-v-e0597bf9] {
background: var(--comfy-input-bg);
border-radius: 5px;
box-shadow: 0 0 5px rgba(0, 0, 0, 0.4);
color: var(--input-text);
font-family: sans-serif;
left: 0;
max-width: 30vw;
padding: 4px 8px;
position: absolute;
top: 0;
transform: translate(5px, calc(-100% - 5px));
white-space: pre-wrap;
z-index: 99999;
}

865
web/assets/colorPalette-D5oi2-2V.js generated vendored Normal file
View File

@ -0,0 +1,865 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { k as app, aP as LGraphCanvas, bO as useToastStore, ca as $el, z as LiteGraph } from "./index-DGAbdBYF.js";
const colorPalettes = {
dark: {
id: "dark",
name: "Dark (Default)",
colors: {
node_slot: {
CLIP: "#FFD500",
// bright yellow
CLIP_VISION: "#A8DADC",
// light blue-gray
CLIP_VISION_OUTPUT: "#ad7452",
// rusty brown-orange
CONDITIONING: "#FFA931",
// vibrant orange-yellow
CONTROL_NET: "#6EE7B7",
// soft mint green
IMAGE: "#64B5F6",
// bright sky blue
LATENT: "#FF9CF9",
// light pink-purple
MASK: "#81C784",
// muted green
MODEL: "#B39DDB",
// light lavender-purple
STYLE_MODEL: "#C2FFAE",
// light green-yellow
VAE: "#FF6E6E",
// bright red
NOISE: "#B0B0B0",
// gray
GUIDER: "#66FFFF",
// cyan
SAMPLER: "#ECB4B4",
// very soft red
SIGMAS: "#CDFFCD",
// soft lime green
TAESD: "#DCC274"
// cheesecake
},
litegraph_base: {
BACKGROUND_IMAGE: "",
CLEAR_BACKGROUND_COLOR: "#222",
NODE_TITLE_COLOR: "#999",
NODE_SELECTED_TITLE_COLOR: "#FFF",
NODE_TEXT_SIZE: 14,
NODE_TEXT_COLOR: "#AAA",
NODE_SUBTEXT_SIZE: 12,
NODE_DEFAULT_COLOR: "#333",
NODE_DEFAULT_BGCOLOR: "#353535",
NODE_DEFAULT_BOXCOLOR: "#666",
NODE_DEFAULT_SHAPE: "box",
NODE_BOX_OUTLINE_COLOR: "#FFF",
NODE_BYPASS_BGCOLOR: "#FF00FF",
DEFAULT_SHADOW_COLOR: "rgba(0,0,0,0.5)",
DEFAULT_GROUP_FONT: 24,
WIDGET_BGCOLOR: "#222",
WIDGET_OUTLINE_COLOR: "#666",
WIDGET_TEXT_COLOR: "#DDD",
WIDGET_SECONDARY_TEXT_COLOR: "#999",
LINK_COLOR: "#9A9",
EVENT_LINK_COLOR: "#A86",
CONNECTING_LINK_COLOR: "#AFA",
BADGE_FG_COLOR: "#FFF",
BADGE_BG_COLOR: "#0F1F0F"
},
comfy_base: {
"fg-color": "#fff",
"bg-color": "#202020",
"comfy-menu-bg": "#353535",
"comfy-input-bg": "#222",
"input-text": "#ddd",
"descrip-text": "#999",
"drag-text": "#ccc",
"error-text": "#ff4444",
"border-color": "#4e4e4e",
"tr-even-bg-color": "#222",
"tr-odd-bg-color": "#353535",
"content-bg": "#4e4e4e",
"content-fg": "#fff",
"content-hover-bg": "#222",
"content-hover-fg": "#fff"
}
}
},
light: {
id: "light",
name: "Light",
colors: {
node_slot: {
CLIP: "#FFA726",
// orange
CLIP_VISION: "#5C6BC0",
// indigo
CLIP_VISION_OUTPUT: "#8D6E63",
// brown
CONDITIONING: "#EF5350",
// red
CONTROL_NET: "#66BB6A",
// green
IMAGE: "#42A5F5",
// blue
LATENT: "#AB47BC",
// purple
MASK: "#9CCC65",
// light green
MODEL: "#7E57C2",
// deep purple
STYLE_MODEL: "#D4E157",
// lime
VAE: "#FF7043"
// deep orange
},
litegraph_base: {
BACKGROUND_IMAGE: "",
CLEAR_BACKGROUND_COLOR: "lightgray",
NODE_TITLE_COLOR: "#222",
NODE_SELECTED_TITLE_COLOR: "#000",
NODE_TEXT_SIZE: 14,
NODE_TEXT_COLOR: "#444",
NODE_SUBTEXT_SIZE: 12,
NODE_DEFAULT_COLOR: "#F7F7F7",
NODE_DEFAULT_BGCOLOR: "#F5F5F5",
NODE_DEFAULT_BOXCOLOR: "#CCC",
NODE_DEFAULT_SHAPE: "box",
NODE_BOX_OUTLINE_COLOR: "#000",
NODE_BYPASS_BGCOLOR: "#FF00FF",
DEFAULT_SHADOW_COLOR: "rgba(0,0,0,0.1)",
DEFAULT_GROUP_FONT: 24,
WIDGET_BGCOLOR: "#D4D4D4",
WIDGET_OUTLINE_COLOR: "#999",
WIDGET_TEXT_COLOR: "#222",
WIDGET_SECONDARY_TEXT_COLOR: "#555",
LINK_COLOR: "#4CAF50",
EVENT_LINK_COLOR: "#FF9800",
CONNECTING_LINK_COLOR: "#2196F3",
BADGE_FG_COLOR: "#000",
BADGE_BG_COLOR: "#FFF"
},
comfy_base: {
"fg-color": "#222",
"bg-color": "#DDD",
"comfy-menu-bg": "#F5F5F5",
"comfy-input-bg": "#C9C9C9",
"input-text": "#222",
"descrip-text": "#444",
"drag-text": "#555",
"error-text": "#F44336",
"border-color": "#888",
"tr-even-bg-color": "#f9f9f9",
"tr-odd-bg-color": "#fff",
"content-bg": "#e0e0e0",
"content-fg": "#222",
"content-hover-bg": "#adadad",
"content-hover-fg": "#222"
}
}
},
solarized: {
id: "solarized",
name: "Solarized",
colors: {
node_slot: {
CLIP: "#2AB7CA",
// light blue
CLIP_VISION: "#6c71c4",
// blue violet
CLIP_VISION_OUTPUT: "#859900",
// olive green
CONDITIONING: "#d33682",
// magenta
CONTROL_NET: "#d1ffd7",
// light mint green
IMAGE: "#5940bb",
// deep blue violet
LATENT: "#268bd2",
// blue
MASK: "#CCC9E7",
// light purple-gray
MODEL: "#dc322f",
// red
STYLE_MODEL: "#1a998a",
// teal
UPSCALE_MODEL: "#054A29",
// dark green
VAE: "#facfad"
// light pink-orange
},
litegraph_base: {
NODE_TITLE_COLOR: "#fdf6e3",
// Base3
NODE_SELECTED_TITLE_COLOR: "#A9D400",
NODE_TEXT_SIZE: 14,
NODE_TEXT_COLOR: "#657b83",
// Base00
NODE_SUBTEXT_SIZE: 12,
NODE_DEFAULT_COLOR: "#094656",
NODE_DEFAULT_BGCOLOR: "#073642",
// Base02
NODE_DEFAULT_BOXCOLOR: "#839496",
// Base0
NODE_DEFAULT_SHAPE: "box",
NODE_BOX_OUTLINE_COLOR: "#fdf6e3",
// Base3
NODE_BYPASS_BGCOLOR: "#FF00FF",
DEFAULT_SHADOW_COLOR: "rgba(0,0,0,0.5)",
DEFAULT_GROUP_FONT: 24,
WIDGET_BGCOLOR: "#002b36",
// Base03
WIDGET_OUTLINE_COLOR: "#839496",
// Base0
WIDGET_TEXT_COLOR: "#fdf6e3",
// Base3
WIDGET_SECONDARY_TEXT_COLOR: "#93a1a1",
// Base1
LINK_COLOR: "#2aa198",
// Solarized Cyan
EVENT_LINK_COLOR: "#268bd2",
// Solarized Blue
CONNECTING_LINK_COLOR: "#859900"
// Solarized Green
},
comfy_base: {
"fg-color": "#fdf6e3",
// Base3
"bg-color": "#002b36",
// Base03
"comfy-menu-bg": "#073642",
// Base02
"comfy-input-bg": "#002b36",
// Base03
"input-text": "#93a1a1",
// Base1
"descrip-text": "#586e75",
// Base01
"drag-text": "#839496",
// Base0
"error-text": "#dc322f",
// Solarized Red
"border-color": "#657b83",
// Base00
"tr-even-bg-color": "#002b36",
"tr-odd-bg-color": "#073642",
"content-bg": "#657b83",
"content-fg": "#fdf6e3",
"content-hover-bg": "#002b36",
"content-hover-fg": "#fdf6e3"
}
}
},
arc: {
id: "arc",
name: "Arc",
colors: {
node_slot: {
BOOLEAN: "",
CLIP: "#eacb8b",
CLIP_VISION: "#A8DADC",
CLIP_VISION_OUTPUT: "#ad7452",
CONDITIONING: "#cf876f",
CONTROL_NET: "#00d78d",
CONTROL_NET_WEIGHTS: "",
FLOAT: "",
GLIGEN: "",
IMAGE: "#80a1c0",
IMAGEUPLOAD: "",
INT: "",
LATENT: "#b38ead",
LATENT_KEYFRAME: "",
MASK: "#a3bd8d",
MODEL: "#8978a7",
SAMPLER: "",
SIGMAS: "",
STRING: "",
STYLE_MODEL: "#C2FFAE",
T2I_ADAPTER_WEIGHTS: "",
TAESD: "#DCC274",
TIMESTEP_KEYFRAME: "",
UPSCALE_MODEL: "",
VAE: "#be616b"
},
litegraph_base: {
BACKGROUND_IMAGE: "",
CLEAR_BACKGROUND_COLOR: "#2b2f38",
NODE_TITLE_COLOR: "#b2b7bd",
NODE_SELECTED_TITLE_COLOR: "#FFF",
NODE_TEXT_SIZE: 14,
NODE_TEXT_COLOR: "#AAA",
NODE_SUBTEXT_SIZE: 12,
NODE_DEFAULT_COLOR: "#2b2f38",
NODE_DEFAULT_BGCOLOR: "#242730",
NODE_DEFAULT_BOXCOLOR: "#6e7581",
NODE_DEFAULT_SHAPE: "box",
NODE_BOX_OUTLINE_COLOR: "#FFF",
NODE_BYPASS_BGCOLOR: "#FF00FF",
DEFAULT_SHADOW_COLOR: "rgba(0,0,0,0.5)",
DEFAULT_GROUP_FONT: 22,
WIDGET_BGCOLOR: "#2b2f38",
WIDGET_OUTLINE_COLOR: "#6e7581",
WIDGET_TEXT_COLOR: "#DDD",
WIDGET_SECONDARY_TEXT_COLOR: "#b2b7bd",
LINK_COLOR: "#9A9",
EVENT_LINK_COLOR: "#A86",
CONNECTING_LINK_COLOR: "#AFA"
},
comfy_base: {
"fg-color": "#fff",
"bg-color": "#2b2f38",
"comfy-menu-bg": "#242730",
"comfy-input-bg": "#2b2f38",
"input-text": "#ddd",
"descrip-text": "#b2b7bd",
"drag-text": "#ccc",
"error-text": "#ff4444",
"border-color": "#6e7581",
"tr-even-bg-color": "#2b2f38",
"tr-odd-bg-color": "#242730",
"content-bg": "#6e7581",
"content-fg": "#fff",
"content-hover-bg": "#2b2f38",
"content-hover-fg": "#fff"
}
}
},
nord: {
id: "nord",
name: "Nord",
colors: {
node_slot: {
BOOLEAN: "",
CLIP: "#eacb8b",
CLIP_VISION: "#A8DADC",
CLIP_VISION_OUTPUT: "#ad7452",
CONDITIONING: "#cf876f",
CONTROL_NET: "#00d78d",
CONTROL_NET_WEIGHTS: "",
FLOAT: "",
GLIGEN: "",
IMAGE: "#80a1c0",
IMAGEUPLOAD: "",
INT: "",
LATENT: "#b38ead",
LATENT_KEYFRAME: "",
MASK: "#a3bd8d",
MODEL: "#8978a7",
SAMPLER: "",
SIGMAS: "",
STRING: "",
STYLE_MODEL: "#C2FFAE",
T2I_ADAPTER_WEIGHTS: "",
TAESD: "#DCC274",
TIMESTEP_KEYFRAME: "",
UPSCALE_MODEL: "",
VAE: "#be616b"
},
litegraph_base: {
BACKGROUND_IMAGE: "",
CLEAR_BACKGROUND_COLOR: "#212732",
NODE_TITLE_COLOR: "#999",
NODE_SELECTED_TITLE_COLOR: "#e5eaf0",
NODE_TEXT_SIZE: 14,
NODE_TEXT_COLOR: "#bcc2c8",
NODE_SUBTEXT_SIZE: 12,
NODE_DEFAULT_COLOR: "#2e3440",
NODE_DEFAULT_BGCOLOR: "#161b22",
NODE_DEFAULT_BOXCOLOR: "#545d70",
NODE_DEFAULT_SHAPE: "box",
NODE_BOX_OUTLINE_COLOR: "#e5eaf0",
NODE_BYPASS_BGCOLOR: "#FF00FF",
DEFAULT_SHADOW_COLOR: "rgba(0,0,0,0.5)",
DEFAULT_GROUP_FONT: 24,
WIDGET_BGCOLOR: "#2e3440",
WIDGET_OUTLINE_COLOR: "#545d70",
WIDGET_TEXT_COLOR: "#bcc2c8",
WIDGET_SECONDARY_TEXT_COLOR: "#999",
LINK_COLOR: "#9A9",
EVENT_LINK_COLOR: "#A86",
CONNECTING_LINK_COLOR: "#AFA"
},
comfy_base: {
"fg-color": "#e5eaf0",
"bg-color": "#2e3440",
"comfy-menu-bg": "#161b22",
"comfy-input-bg": "#2e3440",
"input-text": "#bcc2c8",
"descrip-text": "#999",
"drag-text": "#ccc",
"error-text": "#ff4444",
"border-color": "#545d70",
"tr-even-bg-color": "#2e3440",
"tr-odd-bg-color": "#161b22",
"content-bg": "#545d70",
"content-fg": "#e5eaf0",
"content-hover-bg": "#2e3440",
"content-hover-fg": "#e5eaf0"
}
}
},
github: {
id: "github",
name: "Github",
colors: {
node_slot: {
BOOLEAN: "",
CLIP: "#eacb8b",
CLIP_VISION: "#A8DADC",
CLIP_VISION_OUTPUT: "#ad7452",
CONDITIONING: "#cf876f",
CONTROL_NET: "#00d78d",
CONTROL_NET_WEIGHTS: "",
FLOAT: "",
GLIGEN: "",
IMAGE: "#80a1c0",
IMAGEUPLOAD: "",
INT: "",
LATENT: "#b38ead",
LATENT_KEYFRAME: "",
MASK: "#a3bd8d",
MODEL: "#8978a7",
SAMPLER: "",
SIGMAS: "",
STRING: "",
STYLE_MODEL: "#C2FFAE",
T2I_ADAPTER_WEIGHTS: "",
TAESD: "#DCC274",
TIMESTEP_KEYFRAME: "",
UPSCALE_MODEL: "",
VAE: "#be616b"
},
litegraph_base: {
BACKGROUND_IMAGE: "",
CLEAR_BACKGROUND_COLOR: "#040506",
NODE_TITLE_COLOR: "#999",
NODE_SELECTED_TITLE_COLOR: "#e5eaf0",
NODE_TEXT_SIZE: 14,
NODE_TEXT_COLOR: "#bcc2c8",
NODE_SUBTEXT_SIZE: 12,
NODE_DEFAULT_COLOR: "#161b22",
NODE_DEFAULT_BGCOLOR: "#13171d",
NODE_DEFAULT_BOXCOLOR: "#30363d",
NODE_DEFAULT_SHAPE: "box",
NODE_BOX_OUTLINE_COLOR: "#e5eaf0",
NODE_BYPASS_BGCOLOR: "#FF00FF",
DEFAULT_SHADOW_COLOR: "rgba(0,0,0,0.5)",
DEFAULT_GROUP_FONT: 24,
WIDGET_BGCOLOR: "#161b22",
WIDGET_OUTLINE_COLOR: "#30363d",
WIDGET_TEXT_COLOR: "#bcc2c8",
WIDGET_SECONDARY_TEXT_COLOR: "#999",
LINK_COLOR: "#9A9",
EVENT_LINK_COLOR: "#A86",
CONNECTING_LINK_COLOR: "#AFA"
},
comfy_base: {
"fg-color": "#e5eaf0",
"bg-color": "#161b22",
"comfy-menu-bg": "#13171d",
"comfy-input-bg": "#161b22",
"input-text": "#bcc2c8",
"descrip-text": "#999",
"drag-text": "#ccc",
"error-text": "#ff4444",
"border-color": "#30363d",
"tr-even-bg-color": "#161b22",
"tr-odd-bg-color": "#13171d",
"content-bg": "#30363d",
"content-fg": "#e5eaf0",
"content-hover-bg": "#161b22",
"content-hover-fg": "#e5eaf0"
}
}
}
};
const id = "Comfy.ColorPalette";
const idCustomColorPalettes = "Comfy.CustomColorPalettes";
const defaultColorPaletteId = "dark";
const els = {
select: null
};
const getCustomColorPalettes = /* @__PURE__ */ __name(() => {
return app.ui.settings.getSettingValue(idCustomColorPalettes, {});
}, "getCustomColorPalettes");
const setCustomColorPalettes = /* @__PURE__ */ __name((customColorPalettes) => {
return app.ui.settings.setSettingValue(
idCustomColorPalettes,
customColorPalettes
);
}, "setCustomColorPalettes");
const defaultColorPalette = colorPalettes[defaultColorPaletteId];
const getColorPalette = /* @__PURE__ */ __name((colorPaletteId) => {
if (!colorPaletteId) {
colorPaletteId = app.ui.settings.getSettingValue(id, defaultColorPaletteId);
}
if (colorPaletteId.startsWith("custom_")) {
colorPaletteId = colorPaletteId.substr(7);
let customColorPalettes = getCustomColorPalettes();
if (customColorPalettes[colorPaletteId]) {
return customColorPalettes[colorPaletteId];
}
}
return colorPalettes[colorPaletteId];
}, "getColorPalette");
const setColorPalette = /* @__PURE__ */ __name((colorPaletteId) => {
app.ui.settings.setSettingValue(id, colorPaletteId);
}, "setColorPalette");
app.registerExtension({
name: id,
init() {
LGraphCanvas.prototype.updateBackground = function(image, clearBackgroundColor) {
this._bg_img = new Image();
this._bg_img.name = image;
this._bg_img.src = image;
this._bg_img.onload = () => {
this.draw(true, true);
};
this.background_image = image;
this.clear_background = true;
this.clear_background_color = clearBackgroundColor;
this._pattern = null;
};
},
addCustomNodeDefs(node_defs) {
const sortObjectKeys = /* @__PURE__ */ __name((unordered) => {
return Object.keys(unordered).sort().reduce((obj, key) => {
obj[key] = unordered[key];
return obj;
}, {});
}, "sortObjectKeys");
function getSlotTypes() {
var types = [];
const defs = node_defs;
for (const nodeId in defs) {
const nodeData = defs[nodeId];
var inputs = nodeData["input"]["required"];
if (nodeData["input"]["optional"] !== void 0) {
inputs = Object.assign(
{},
nodeData["input"]["required"],
nodeData["input"]["optional"]
);
}
for (const inputName in inputs) {
const inputData = inputs[inputName];
const type = inputData[0];
if (!Array.isArray(type)) {
types.push(type);
}
}
for (const o in nodeData["output"]) {
const output = nodeData["output"][o];
types.push(output);
}
}
return types;
}
__name(getSlotTypes, "getSlotTypes");
function completeColorPalette(colorPalette) {
var types = getSlotTypes();
for (const type of types) {
if (!colorPalette.colors.node_slot[type]) {
colorPalette.colors.node_slot[type] = "";
}
}
colorPalette.colors.node_slot = sortObjectKeys(
colorPalette.colors.node_slot
);
return colorPalette;
}
__name(completeColorPalette, "completeColorPalette");
const getColorPaletteTemplate = /* @__PURE__ */ __name(async () => {
let colorPalette = {
id: "my_color_palette_unique_id",
name: "My Color Palette",
colors: {
node_slot: {},
litegraph_base: {},
comfy_base: {}
}
};
const defaultColorPalette2 = colorPalettes[defaultColorPaletteId];
for (const key in defaultColorPalette2.colors.litegraph_base) {
if (!colorPalette.colors.litegraph_base[key]) {
colorPalette.colors.litegraph_base[key] = "";
}
}
for (const key in defaultColorPalette2.colors.comfy_base) {
if (!colorPalette.colors.comfy_base[key]) {
colorPalette.colors.comfy_base[key] = "";
}
}
return completeColorPalette(colorPalette);
}, "getColorPaletteTemplate");
const addCustomColorPalette = /* @__PURE__ */ __name(async (colorPalette) => {
if (typeof colorPalette !== "object") {
useToastStore().addAlert("Invalid color palette.");
return;
}
if (!colorPalette.id) {
useToastStore().addAlert("Color palette missing id.");
return;
}
if (!colorPalette.name) {
useToastStore().addAlert("Color palette missing name.");
return;
}
if (!colorPalette.colors) {
useToastStore().addAlert("Color palette missing colors.");
return;
}
if (colorPalette.colors.node_slot && typeof colorPalette.colors.node_slot !== "object") {
useToastStore().addAlert("Invalid color palette colors.node_slot.");
return;
}
const customColorPalettes = getCustomColorPalettes();
customColorPalettes[colorPalette.id] = colorPalette;
setCustomColorPalettes(customColorPalettes);
for (const option of els.select.childNodes) {
if (option.value === "custom_" + colorPalette.id) {
els.select.removeChild(option);
}
}
els.select.append(
$el("option", {
textContent: colorPalette.name + " (custom)",
value: "custom_" + colorPalette.id,
selected: true
})
);
setColorPalette("custom_" + colorPalette.id);
await loadColorPalette(colorPalette);
}, "addCustomColorPalette");
const deleteCustomColorPalette = /* @__PURE__ */ __name(async (colorPaletteId) => {
const customColorPalettes = getCustomColorPalettes();
delete customColorPalettes[colorPaletteId];
setCustomColorPalettes(customColorPalettes);
for (const opt of els.select.childNodes) {
const option = opt;
if (option.value === defaultColorPaletteId) {
option.selected = true;
}
if (option.value === "custom_" + colorPaletteId) {
els.select.removeChild(option);
}
}
setColorPalette(defaultColorPaletteId);
await loadColorPalette(getColorPalette());
}, "deleteCustomColorPalette");
const loadColorPalette = /* @__PURE__ */ __name(async (colorPalette) => {
colorPalette = await completeColorPalette(colorPalette);
if (colorPalette.colors) {
if (colorPalette.colors.node_slot) {
Object.assign(
app.canvas.default_connection_color_byType,
colorPalette.colors.node_slot
);
Object.assign(
LGraphCanvas.link_type_colors,
colorPalette.colors.node_slot
);
}
if (colorPalette.colors.litegraph_base) {
app.canvas.node_title_color = colorPalette.colors.litegraph_base.NODE_TITLE_COLOR;
app.canvas.default_link_color = colorPalette.colors.litegraph_base.LINK_COLOR;
for (const key in colorPalette.colors.litegraph_base) {
if (colorPalette.colors.litegraph_base.hasOwnProperty(key) && LiteGraph.hasOwnProperty(key)) {
LiteGraph[key] = colorPalette.colors.litegraph_base[key];
}
}
}
if (colorPalette.colors.comfy_base) {
const rootStyle = document.documentElement.style;
for (const key in colorPalette.colors.comfy_base) {
rootStyle.setProperty(
"--" + key,
colorPalette.colors.comfy_base[key]
);
}
}
if (colorPalette.colors.litegraph_base.NODE_BYPASS_BGCOLOR) {
app.bypassBgColor = colorPalette.colors.litegraph_base.NODE_BYPASS_BGCOLOR;
}
app.canvas.draw(true, true);
}
}, "loadColorPalette");
const fileInput = $el("input", {
type: "file",
accept: ".json",
style: { display: "none" },
parent: document.body,
onchange: /* @__PURE__ */ __name(() => {
const file = fileInput.files[0];
if (file.type === "application/json" || file.name.endsWith(".json")) {
const reader = new FileReader();
reader.onload = async () => {
await addCustomColorPalette(JSON.parse(reader.result));
};
reader.readAsText(file);
}
}, "onchange")
});
app.ui.settings.addSetting({
id,
category: ["Comfy", "ColorPalette"],
name: "Color Palette",
type: /* @__PURE__ */ __name((name, setter, value) => {
const options = [
...Object.values(colorPalettes).map(
(c) => $el("option", {
textContent: c.name,
value: c.id,
selected: c.id === value
})
),
...Object.values(getCustomColorPalettes()).map(
(c) => $el("option", {
textContent: `${c.name} (custom)`,
value: `custom_${c.id}`,
selected: `custom_${c.id}` === value
})
)
];
els.select = $el(
"select",
{
style: {
marginBottom: "0.15rem",
width: "100%"
},
onchange: /* @__PURE__ */ __name((e) => {
setter(e.target.value);
}, "onchange")
},
options
);
return $el("tr", [
$el("td", [
els.select,
$el(
"div",
{
style: {
display: "grid",
gap: "4px",
gridAutoFlow: "column"
}
},
[
$el("input", {
type: "button",
value: "Export",
onclick: /* @__PURE__ */ __name(async () => {
const colorPaletteId = app.ui.settings.getSettingValue(
id,
defaultColorPaletteId
);
const colorPalette = await completeColorPalette(
getColorPalette(colorPaletteId)
);
const json = JSON.stringify(colorPalette, null, 2);
const blob = new Blob([json], { type: "application/json" });
const url = URL.createObjectURL(blob);
const a = $el("a", {
href: url,
download: colorPaletteId + ".json",
style: { display: "none" },
parent: document.body
});
a.click();
setTimeout(function() {
a.remove();
window.URL.revokeObjectURL(url);
}, 0);
}, "onclick")
}),
$el("input", {
type: "button",
value: "Import",
onclick: /* @__PURE__ */ __name(() => {
fileInput.click();
}, "onclick")
}),
$el("input", {
type: "button",
value: "Template",
onclick: /* @__PURE__ */ __name(async () => {
const colorPalette = await getColorPaletteTemplate();
const json = JSON.stringify(colorPalette, null, 2);
const blob = new Blob([json], { type: "application/json" });
const url = URL.createObjectURL(blob);
const a = $el("a", {
href: url,
download: "color_palette.json",
style: { display: "none" },
parent: document.body
});
a.click();
setTimeout(function() {
a.remove();
window.URL.revokeObjectURL(url);
}, 0);
}, "onclick")
}),
$el("input", {
type: "button",
value: "Delete",
onclick: /* @__PURE__ */ __name(async () => {
let colorPaletteId = app.ui.settings.getSettingValue(
id,
defaultColorPaletteId
);
if (colorPalettes[colorPaletteId]) {
useToastStore().addAlert(
"You cannot delete a built-in color palette."
);
return;
}
if (colorPaletteId.startsWith("custom_")) {
colorPaletteId = colorPaletteId.substr(7);
}
await deleteCustomColorPalette(colorPaletteId);
}, "onclick")
})
]
)
])
]);
}, "type"),
defaultValue: defaultColorPaletteId,
async onChange(value) {
if (!value) {
return;
}
let palette = colorPalettes[value];
if (palette) {
await loadColorPalette(palette);
} else if (value.startsWith("custom_")) {
value = value.substr(7);
let customColorPalettes = getCustomColorPalettes();
if (customColorPalettes[value]) {
palette = customColorPalettes[value];
await loadColorPalette(customColorPalettes[value]);
}
}
let { BACKGROUND_IMAGE, CLEAR_BACKGROUND_COLOR } = palette.colors.litegraph_base;
if (BACKGROUND_IMAGE === void 0 || CLEAR_BACKGROUND_COLOR === void 0) {
const base = colorPalettes["dark"].colors.litegraph_base;
BACKGROUND_IMAGE = base.BACKGROUND_IMAGE;
CLEAR_BACKGROUND_COLOR = base.CLEAR_BACKGROUND_COLOR;
}
app.canvas.updateBackground(BACKGROUND_IMAGE, CLEAR_BACKGROUND_COLOR);
}
});
}
});
window.comfyAPI = window.comfyAPI || {};
window.comfyAPI.colorPalette = window.comfyAPI.colorPalette || {};
window.comfyAPI.colorPalette.defaultColorPalette = defaultColorPalette;
window.comfyAPI.colorPalette.getColorPalette = getColorPalette;
export {
defaultColorPalette as d,
getColorPalette as g
};
//# sourceMappingURL=colorPalette-D5oi2-2V.js.map

1
web/assets/colorPalette-D5oi2-2V.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

1
web/assets/index-BDBCRrlL.js.map generated vendored

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

1
web/assets/index-BMC1ey-i.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

1
web/assets/index-DGAbdBYF.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

1
web/assets/index-Drc_oD2f.js.map generated vendored

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -1,3 +1,37 @@
.lds-ring {
display: inline-block;
position: relative;
width: 1em;
height: 1em;
}
.lds-ring div {
box-sizing: border-box;
display: block;
position: absolute;
width: 100%;
height: 100%;
border: 0.15em solid #fff;
border-radius: 50%;
animation: lds-ring 1.2s cubic-bezier(0.5, 0, 0.5, 1) infinite;
border-color: #fff transparent transparent transparent;
}
.lds-ring div:nth-child(1) {
animation-delay: -0.45s;
}
.lds-ring div:nth-child(2) {
animation-delay: -0.3s;
}
.lds-ring div:nth-child(3) {
animation-delay: -0.15s;
}
@keyframes lds-ring {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
.comfy-user-selection {
width: 100vw;
height: 100vh;

View File

@ -1,6 +1,15 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { aY as createSpinner, aT as api, aN as $el } from "./index-Drc_oD2f.js";
import { b4 as api, ca as $el } from "./index-DGAbdBYF.js";
function createSpinner() {
const div = document.createElement("div");
div.innerHTML = `<div class="lds-ring"><div></div><div></div><div></div><div></div></div>`;
return div.firstElementChild;
}
__name(createSpinner, "createSpinner");
window.comfyAPI = window.comfyAPI || {};
window.comfyAPI.spinner = window.comfyAPI.spinner || {};
window.comfyAPI.spinner.createSpinner = createSpinner;
class UserSelectionScreen {
static {
__name(this, "UserSelectionScreen");
@ -117,4 +126,4 @@ window.comfyAPI.userSelection.UserSelectionScreen = UserSelectionScreen;
export {
UserSelectionScreen
};
//# sourceMappingURL=userSelection-BM5u5JIA.js.map
//# sourceMappingURL=userSelection-Duxc-t_S.js.map

1
web/assets/userSelection-Duxc-t_S.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

756
web/assets/widgetInputs-DdoWwzg5.js generated vendored Normal file
View File

@ -0,0 +1,756 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { l as LGraphNode, k as app, cf as applyTextReplacements, ce as ComfyWidgets, ci as addValueControlWidgets, z as LiteGraph } from "./index-DGAbdBYF.js";
const CONVERTED_TYPE = "converted-widget";
const VALID_TYPES = [
"STRING",
"combo",
"number",
"toggle",
"BOOLEAN",
"text",
"string"
];
const CONFIG = Symbol();
const GET_CONFIG = Symbol();
const TARGET = Symbol();
const replacePropertyName = "Run widget replace on values";
class PrimitiveNode extends LGraphNode {
static {
__name(this, "PrimitiveNode");
}
controlValues;
lastType;
static category;
constructor(title) {
super(title);
this.addOutput("connect to widget input", "*");
this.serialize_widgets = true;
this.isVirtualNode = true;
if (!this.properties || !(replacePropertyName in this.properties)) {
this.addProperty(replacePropertyName, false, "boolean");
}
}
applyToGraph(extraLinks = []) {
if (!this.outputs[0].links?.length) return;
function get_links(node) {
let links2 = [];
for (const l of node.outputs[0].links) {
const linkInfo = app.graph.links[l];
const n = node.graph.getNodeById(linkInfo.target_id);
if (n.type == "Reroute") {
links2 = links2.concat(get_links(n));
} else {
links2.push(l);
}
}
return links2;
}
__name(get_links, "get_links");
let links = [
...get_links(this).map((l) => app.graph.links[l]),
...extraLinks
];
let v = this.widgets?.[0].value;
if (v && this.properties[replacePropertyName]) {
v = applyTextReplacements(app, v);
}
for (const linkInfo of links) {
const node = this.graph.getNodeById(linkInfo.target_id);
const input = node.inputs[linkInfo.target_slot];
let widget;
if (input.widget[TARGET]) {
widget = input.widget[TARGET];
} else {
const widgetName = input.widget.name;
if (widgetName) {
widget = node.widgets.find((w) => w.name === widgetName);
}
}
if (widget) {
widget.value = v;
if (widget.callback) {
widget.callback(
widget.value,
app.canvas,
node,
app.canvas.graph_mouse,
{}
);
}
}
}
}
refreshComboInNode() {
const widget = this.widgets?.[0];
if (widget?.type === "combo") {
widget.options.values = this.outputs[0].widget[GET_CONFIG]()[0];
if (!widget.options.values.includes(widget.value)) {
widget.value = widget.options.values[0];
widget.callback(widget.value);
}
}
}
onAfterGraphConfigured() {
if (this.outputs[0].links?.length && !this.widgets?.length) {
if (!this.#onFirstConnection()) return;
if (this.widgets) {
for (let i = 0; i < this.widgets_values.length; i++) {
const w = this.widgets[i];
if (w) {
w.value = this.widgets_values[i];
}
}
}
this.#mergeWidgetConfig();
}
}
onConnectionsChange(_, index, connected) {
if (app.configuringGraph) {
return;
}
const links = this.outputs[0].links;
if (connected) {
if (links?.length && !this.widgets?.length) {
this.#onFirstConnection();
}
} else {
this.#mergeWidgetConfig();
if (!links?.length) {
this.onLastDisconnect();
}
}
}
onConnectOutput(slot, type, input, target_node, target_slot) {
if (!input.widget) {
if (!(input.type in ComfyWidgets)) return false;
}
if (this.outputs[slot].links?.length) {
const valid = this.#isValidConnection(input);
if (valid) {
this.applyToGraph([{ target_id: target_node.id, target_slot }]);
}
return valid;
}
}
#onFirstConnection(recreating) {
if (!this.outputs[0].links) {
this.onLastDisconnect();
return;
}
const linkId = this.outputs[0].links[0];
const link = this.graph.links[linkId];
if (!link) return;
const theirNode = this.graph.getNodeById(link.target_id);
if (!theirNode || !theirNode.inputs) return;
const input = theirNode.inputs[link.target_slot];
if (!input) return;
let widget;
if (!input.widget) {
if (!(input.type in ComfyWidgets)) return;
widget = { name: input.name, [GET_CONFIG]: () => [input.type, {}] };
} else {
widget = input.widget;
}
const config = widget[GET_CONFIG]?.();
if (!config) return;
const { type } = getWidgetType(config);
this.outputs[0].type = type;
this.outputs[0].name = type;
this.outputs[0].widget = widget;
this.#createWidget(
widget[CONFIG] ?? config,
theirNode,
widget.name,
recreating,
widget[TARGET]
);
}
#createWidget(inputData, node, widgetName, recreating, targetWidget) {
let type = inputData[0];
if (type instanceof Array) {
type = "COMBO";
}
const size = this.size;
let widget;
if (type in ComfyWidgets) {
widget = (ComfyWidgets[type](this, "value", inputData, app) || {}).widget;
} else {
widget = this.addWidget(type, "value", null, () => {
}, {});
}
if (targetWidget) {
widget.value = targetWidget.value;
} else if (node?.widgets && widget) {
const theirWidget = node.widgets.find((w) => w.name === widgetName);
if (theirWidget) {
widget.value = theirWidget.value;
}
}
if (!inputData?.[1]?.control_after_generate && (widget.type === "number" || widget.type === "combo")) {
let control_value = this.widgets_values?.[1];
if (!control_value) {
control_value = "fixed";
}
addValueControlWidgets(
this,
widget,
control_value,
void 0,
inputData
);
let filter = this.widgets_values?.[2];
if (filter && this.widgets.length === 3) {
this.widgets[2].value = filter;
}
}
const controlValues = this.controlValues;
if (this.lastType === this.widgets[0].type && controlValues?.length === this.widgets.length - 1) {
for (let i = 0; i < controlValues.length; i++) {
this.widgets[i + 1].value = controlValues[i];
}
}
const callback = widget.callback;
const self = this;
widget.callback = function() {
const r = callback ? callback.apply(this, arguments) : void 0;
self.applyToGraph();
return r;
};
this.size = [
Math.max(this.size[0], size[0]),
Math.max(this.size[1], size[1])
];
if (!recreating) {
const sz = this.computeSize();
if (this.size[0] < sz[0]) {
this.size[0] = sz[0];
}
if (this.size[1] < sz[1]) {
this.size[1] = sz[1];
}
requestAnimationFrame(() => {
if (this.onResize) {
this.onResize(this.size);
}
});
}
}
recreateWidget() {
const values = this.widgets?.map((w) => w.value);
this.#removeWidgets();
this.#onFirstConnection(true);
if (values?.length) {
for (let i = 0; i < this.widgets?.length; i++)
this.widgets[i].value = values[i];
}
return this.widgets?.[0];
}
#mergeWidgetConfig() {
const output = this.outputs[0];
const links = output.links;
const hasConfig = !!output.widget[CONFIG];
if (hasConfig) {
delete output.widget[CONFIG];
}
if (links?.length < 2 && hasConfig) {
if (links.length) {
this.recreateWidget();
}
return;
}
const config1 = output.widget[GET_CONFIG]();
const isNumber = config1[0] === "INT" || config1[0] === "FLOAT";
if (!isNumber) return;
for (const linkId of links) {
const link = app.graph.links[linkId];
if (!link) continue;
const theirNode = app.graph.getNodeById(link.target_id);
const theirInput = theirNode.inputs[link.target_slot];
this.#isValidConnection(theirInput, hasConfig);
}
}
isValidWidgetLink(originSlot, targetNode, targetWidget) {
const config2 = getConfig.call(targetNode, targetWidget.name) ?? [
targetWidget.type,
targetWidget.options || {}
];
if (!isConvertibleWidget(targetWidget, config2)) return false;
const output = this.outputs[originSlot];
if (!(output.widget?.[CONFIG] ?? output.widget?.[GET_CONFIG]())) {
return true;
}
return !!mergeIfValid.call(this, output, config2);
}
#isValidConnection(input, forceUpdate) {
const output = this.outputs[0];
const config2 = input.widget[GET_CONFIG]();
return !!mergeIfValid.call(
this,
output,
config2,
forceUpdate,
this.recreateWidget
);
}
#removeWidgets() {
if (this.widgets) {
for (const w of this.widgets) {
if (w.onRemove) {
w.onRemove();
}
}
this.controlValues = [];
this.lastType = this.widgets[0]?.type;
for (let i = 1; i < this.widgets.length; i++) {
this.controlValues.push(this.widgets[i].value);
}
setTimeout(() => {
delete this.lastType;
delete this.controlValues;
}, 15);
this.widgets.length = 0;
}
}
onLastDisconnect() {
this.outputs[0].type = "*";
this.outputs[0].name = "connect to widget input";
delete this.outputs[0].widget;
this.#removeWidgets();
}
}
function getWidgetConfig(slot) {
return slot.widget[CONFIG] ?? slot.widget[GET_CONFIG]();
}
__name(getWidgetConfig, "getWidgetConfig");
function getConfig(widgetName) {
const { nodeData } = this.constructor;
return nodeData?.input?.required?.[widgetName] ?? nodeData?.input?.optional?.[widgetName];
}
__name(getConfig, "getConfig");
function isConvertibleWidget(widget, config) {
return (VALID_TYPES.includes(widget.type) || VALID_TYPES.includes(config[0])) && !widget.options?.forceInput;
}
__name(isConvertibleWidget, "isConvertibleWidget");
function hideWidget(node, widget, suffix = "") {
if (widget.type?.startsWith(CONVERTED_TYPE)) return;
widget.origType = widget.type;
widget.origComputeSize = widget.computeSize;
widget.origSerializeValue = widget.serializeValue;
widget.computeSize = () => [0, -4];
widget.type = CONVERTED_TYPE + suffix;
widget.serializeValue = () => {
if (!node.inputs) {
return void 0;
}
let node_input = node.inputs.find((i) => i.widget?.name === widget.name);
if (!node_input || !node_input.link) {
return void 0;
}
return widget.origSerializeValue ? widget.origSerializeValue() : widget.value;
};
if (widget.linkedWidgets) {
for (const w of widget.linkedWidgets) {
hideWidget(node, w, ":" + widget.name);
}
}
}
__name(hideWidget, "hideWidget");
function showWidget(widget) {
widget.type = widget.origType;
widget.computeSize = widget.origComputeSize;
widget.serializeValue = widget.origSerializeValue;
delete widget.origType;
delete widget.origComputeSize;
delete widget.origSerializeValue;
if (widget.linkedWidgets) {
for (const w of widget.linkedWidgets) {
showWidget(w);
}
}
}
__name(showWidget, "showWidget");
function convertToInput(node, widget, config) {
hideWidget(node, widget);
const { type } = getWidgetType(config);
const sz = node.size;
const inputIsOptional = !!widget.options?.inputIsOptional;
const input = node.addInput(widget.name, type, {
widget: { name: widget.name, [GET_CONFIG]: () => config },
...inputIsOptional ? { shape: LiteGraph.SlotShape.HollowCircle } : {}
});
for (const widget2 of node.widgets) {
widget2.last_y += LiteGraph.NODE_SLOT_HEIGHT;
}
node.setSize([Math.max(sz[0], node.size[0]), Math.max(sz[1], node.size[1])]);
return input;
}
__name(convertToInput, "convertToInput");
function convertToWidget(node, widget) {
showWidget(widget);
const sz = node.size;
node.removeInput(node.inputs.findIndex((i) => i.widget?.name === widget.name));
for (const widget2 of node.widgets) {
widget2.last_y -= LiteGraph.NODE_SLOT_HEIGHT;
}
node.setSize([Math.max(sz[0], node.size[0]), Math.max(sz[1], node.size[1])]);
}
__name(convertToWidget, "convertToWidget");
function getWidgetType(config) {
let type = config[0];
if (type instanceof Array) {
type = "COMBO";
}
return { type };
}
__name(getWidgetType, "getWidgetType");
function isValidCombo(combo, obj) {
if (!(obj instanceof Array)) {
console.log(`connection rejected: tried to connect combo to ${obj}`);
return false;
}
if (combo.length !== obj.length) {
console.log(`connection rejected: combo lists dont match`);
return false;
}
if (combo.find((v, i) => obj[i] !== v)) {
console.log(`connection rejected: combo lists dont match`);
return false;
}
return true;
}
__name(isValidCombo, "isValidCombo");
function isPrimitiveNode(node) {
return node.type === "PrimitiveNode";
}
__name(isPrimitiveNode, "isPrimitiveNode");
function setWidgetConfig(slot, config, target) {
if (!slot.widget) return;
if (config) {
slot.widget[GET_CONFIG] = () => config;
slot.widget[TARGET] = target;
} else {
delete slot.widget;
}
if (slot.link) {
const link = app.graph.links[slot.link];
if (link) {
const originNode = app.graph.getNodeById(link.origin_id);
if (isPrimitiveNode(originNode)) {
if (config) {
originNode.recreateWidget();
} else if (!app.configuringGraph) {
originNode.disconnectOutput(0);
originNode.onLastDisconnect();
}
}
}
}
}
__name(setWidgetConfig, "setWidgetConfig");
function mergeIfValid(output, config2, forceUpdate, recreateWidget, config1) {
if (!config1) {
config1 = output.widget[CONFIG] ?? output.widget[GET_CONFIG]();
}
if (config1[0] instanceof Array) {
if (!isValidCombo(config1[0], config2[0])) return;
} else if (config1[0] !== config2[0]) {
console.log(`connection rejected: types dont match`, config1[0], config2[0]);
return;
}
const keys = /* @__PURE__ */ new Set([
...Object.keys(config1[1] ?? {}),
...Object.keys(config2[1] ?? {})
]);
let customConfig;
const getCustomConfig = /* @__PURE__ */ __name(() => {
if (!customConfig) {
if (typeof structuredClone === "undefined") {
customConfig = JSON.parse(JSON.stringify(config1[1] ?? {}));
} else {
customConfig = structuredClone(config1[1] ?? {});
}
}
return customConfig;
}, "getCustomConfig");
const isNumber = config1[0] === "INT" || config1[0] === "FLOAT";
for (const k of keys.values()) {
if (k !== "default" && k !== "forceInput" && k !== "defaultInput" && k !== "control_after_generate" && k !== "multiline" && k !== "tooltip") {
let v1 = config1[1][k];
let v2 = config2[1]?.[k];
if (v1 === v2 || !v1 && !v2) continue;
if (isNumber) {
if (k === "min") {
const theirMax = config2[1]?.["max"];
if (theirMax != null && v1 > theirMax) {
console.log("connection rejected: min > max", v1, theirMax);
return;
}
getCustomConfig()[k] = v1 == null ? v2 : v2 == null ? v1 : Math.max(v1, v2);
continue;
} else if (k === "max") {
const theirMin = config2[1]?.["min"];
if (theirMin != null && v1 < theirMin) {
console.log("connection rejected: max < min", v1, theirMin);
return;
}
getCustomConfig()[k] = v1 == null ? v2 : v2 == null ? v1 : Math.min(v1, v2);
continue;
} else if (k === "step") {
let step;
if (v1 == null) {
step = v2;
} else if (v2 == null) {
step = v1;
} else {
if (v1 < v2) {
const a = v2;
v2 = v1;
v1 = a;
}
if (v1 % v2) {
console.log(
"connection rejected: steps not divisible",
"current:",
v1,
"new:",
v2
);
return;
}
step = v1;
}
getCustomConfig()[k] = step;
continue;
}
}
console.log(`connection rejected: config ${k} values dont match`, v1, v2);
return;
}
}
if (customConfig || forceUpdate) {
if (customConfig) {
output.widget[CONFIG] = [config1[0], customConfig];
}
const widget = recreateWidget?.call(this);
if (widget) {
const min = widget.options.min;
const max = widget.options.max;
if (min != null && widget.value < min) widget.value = min;
if (max != null && widget.value > max) widget.value = max;
widget.callback(widget.value);
}
}
return { customConfig };
}
__name(mergeIfValid, "mergeIfValid");
let useConversionSubmenusSetting;
app.registerExtension({
name: "Comfy.WidgetInputs",
init() {
useConversionSubmenusSetting = app.ui.settings.addSetting({
id: "Comfy.NodeInputConversionSubmenus",
name: "In the node context menu, place the entries that convert between input/widget in sub-menus.",
type: "boolean",
defaultValue: true
});
},
async beforeRegisterNodeDef(nodeType, nodeData, app2) {
const origGetExtraMenuOptions = nodeType.prototype.getExtraMenuOptions;
nodeType.prototype.convertWidgetToInput = function(widget) {
const config = getConfig.call(this, widget.name) ?? [
widget.type,
widget.options || {}
];
if (!isConvertibleWidget(widget, config)) return false;
if (widget.type?.startsWith(CONVERTED_TYPE)) return false;
convertToInput(this, widget, config);
return true;
};
nodeType.prototype.getExtraMenuOptions = function(_, options) {
const r = origGetExtraMenuOptions ? origGetExtraMenuOptions.apply(this, arguments) : void 0;
if (this.widgets) {
let toInput = [];
let toWidget = [];
for (const w of this.widgets) {
if (w.options?.forceInput) {
continue;
}
if (w.type === CONVERTED_TYPE) {
toWidget.push({
content: `Convert ${w.name} to widget`,
callback: /* @__PURE__ */ __name(() => convertToWidget(this, w), "callback")
});
} else {
const config = getConfig.call(this, w.name) ?? [
w.type,
w.options || {}
];
if (isConvertibleWidget(w, config)) {
toInput.push({
content: `Convert ${w.name} to input`,
callback: /* @__PURE__ */ __name(() => convertToInput(this, w, config), "callback")
});
}
}
}
if (toInput.length) {
if (useConversionSubmenusSetting.value) {
options.push({
content: "Convert Widget to Input",
submenu: {
options: toInput
}
});
} else {
options.push(...toInput, null);
}
}
if (toWidget.length) {
if (useConversionSubmenusSetting.value) {
options.push({
content: "Convert Input to Widget",
submenu: {
options: toWidget
}
});
} else {
options.push(...toWidget, null);
}
}
}
return r;
};
nodeType.prototype.onGraphConfigured = function() {
if (!this.inputs) return;
this.widgets ??= [];
for (const input of this.inputs) {
if (input.widget) {
if (!input.widget[GET_CONFIG]) {
input.widget[GET_CONFIG] = () => getConfig.call(this, input.widget.name);
}
if (input.widget.config) {
if (input.widget.config[0] instanceof Array) {
input.type = "COMBO";
const link = app2.graph.links[input.link];
if (link) {
link.type = input.type;
}
}
delete input.widget.config;
}
const w = this.widgets.find((w2) => w2.name === input.widget.name);
if (w) {
hideWidget(this, w);
} else {
convertToWidget(this, input);
}
}
}
};
const origOnNodeCreated = nodeType.prototype.onNodeCreated;
nodeType.prototype.onNodeCreated = function() {
const r = origOnNodeCreated ? origOnNodeCreated.apply(this) : void 0;
if (!app2.configuringGraph && this.widgets) {
for (const w of this.widgets) {
if (w?.options?.forceInput || w?.options?.defaultInput) {
const config = getConfig.call(this, w.name) ?? [
w.type,
w.options || {}
];
convertToInput(this, w, config);
}
}
}
return r;
};
const origOnConfigure = nodeType.prototype.onConfigure;
nodeType.prototype.onConfigure = function() {
const r = origOnConfigure ? origOnConfigure.apply(this, arguments) : void 0;
if (!app2.configuringGraph && this.inputs) {
for (const input of this.inputs) {
if (input.widget && !input.widget[GET_CONFIG]) {
input.widget[GET_CONFIG] = () => getConfig.call(this, input.widget.name);
const w = this.widgets.find((w2) => w2.name === input.widget.name);
if (w) {
hideWidget(this, w);
}
}
}
}
return r;
};
function isNodeAtPos(pos) {
for (const n of app2.graph.nodes) {
if (n.pos[0] === pos[0] && n.pos[1] === pos[1]) {
return true;
}
}
return false;
}
__name(isNodeAtPos, "isNodeAtPos");
const origOnInputDblClick = nodeType.prototype.onInputDblClick;
const ignoreDblClick = Symbol();
nodeType.prototype.onInputDblClick = function(slot) {
const r = origOnInputDblClick ? origOnInputDblClick.apply(this, arguments) : void 0;
const input = this.inputs[slot];
if (!input.widget || !input[ignoreDblClick]) {
if (!(input.type in ComfyWidgets) && !(input.widget[GET_CONFIG]?.()?.[0] instanceof Array)) {
return r;
}
}
const node = LiteGraph.createNode("PrimitiveNode");
app2.graph.add(node);
const pos = [
this.pos[0] - node.size[0] - 30,
this.pos[1]
];
while (isNodeAtPos(pos)) {
pos[1] += LiteGraph.NODE_TITLE_HEIGHT;
}
node.pos = pos;
node.connect(0, this, slot);
node.title = input.name;
input[ignoreDblClick] = true;
setTimeout(() => {
delete input[ignoreDblClick];
}, 300);
return r;
};
const onConnectInput = nodeType.prototype.onConnectInput;
nodeType.prototype.onConnectInput = function(targetSlot, type, output, originNode, originSlot) {
const v = onConnectInput?.(this, arguments);
if (type !== "COMBO") return v;
if (originNode.outputs[originSlot].widget) return v;
const targetCombo = this.inputs[targetSlot].widget?.[GET_CONFIG]?.()?.[0];
if (!targetCombo || !(targetCombo instanceof Array)) return v;
const originConfig = originNode.constructor?.nodeData?.output?.[originSlot];
if (!originConfig || !isValidCombo(targetCombo, originConfig)) {
return false;
}
return v;
};
},
registerCustomNodes() {
LiteGraph.registerNodeType(
"PrimitiveNode",
Object.assign(PrimitiveNode, {
title: "Primitive"
})
);
PrimitiveNode.category = "utils";
}
});
window.comfyAPI = window.comfyAPI || {};
window.comfyAPI.widgetInputs = window.comfyAPI.widgetInputs || {};
window.comfyAPI.widgetInputs.getWidgetConfig = getWidgetConfig;
window.comfyAPI.widgetInputs.convertToInput = convertToInput;
window.comfyAPI.widgetInputs.setWidgetConfig = setWidgetConfig;
window.comfyAPI.widgetInputs.mergeIfValid = mergeIfValid;
export {
convertToInput,
getWidgetConfig,
mergeIfValid,
setWidgetConfig
};
//# sourceMappingURL=widgetInputs-DdoWwzg5.js.map

1
web/assets/widgetInputs-DdoWwzg5.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

View File

@ -1,4 +1,5 @@
// Shim for extensions/core/widgetInputs.ts
export const getWidgetConfig = window.comfyAPI.widgetInputs.getWidgetConfig;
export const convertToInput = window.comfyAPI.widgetInputs.convertToInput;
export const setWidgetConfig = window.comfyAPI.widgetInputs.setWidgetConfig;
export const mergeIfValid = window.comfyAPI.widgetInputs.mergeIfValid;

14
web/index.html vendored
View File

@ -4,20 +4,12 @@
<meta charset="UTF-8">
<title>ComfyUI</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no">
<!-- Browser Test Fonts -->
<!-- <link href="https://fonts.googleapis.com/css2?family=Roboto+Mono:ital,wght@0,100..700;1,100..700&family=Roboto:ital,wght@0,100;0,300;0,400;0,500;0,700;0,900;1,100;1,300;1,400;1,500;1,700;1,900&display=swap" rel="stylesheet">
<link href="https://fonts.googleapis.com/css2?family=Noto+Color+Emoji&family=Roboto+Mono:ital,wght@0,100..700;1,100..700&family=Roboto:ital,wght@0,100;0,300;0,400;0,500;0,700;0,900;1,100;1,300;1,400;1,500;1,700;1,900&display=swap" rel="stylesheet">
<style>
* {
font-family: 'Roboto Mono', 'Noto Color Emoji';
}
</style> -->
<link rel="stylesheet" type="text/css" href="user.css" />
<link rel="stylesheet" type="text/css" href="materialdesignicons.min.css" />
<script type="module" crossorigin src="./assets/index-Drc_oD2f.js"></script>
<link rel="stylesheet" crossorigin href="./assets/index-8NH3XvqK.css">
<script type="module" crossorigin src="./assets/index-DGAbdBYF.js"></script>
<link rel="stylesheet" crossorigin href="./assets/index-BHJGjcJh.css">
</head>
<body class="litegraph">
<body class="litegraph grid">
<div id="vue-app"></div>
<div id="comfy-user-selection" class="comfy-user-selection" style="display: none;">
<main class="comfy-user-selection-inner">

View File

@ -1,2 +1,3 @@
// Shim for scripts/changeTracker.ts
export const ChangeTracker = window.comfyAPI.changeTracker.ChangeTracker;
export const globalTracker = window.comfyAPI.changeTracker.globalTracker;

View File

@ -1,2 +0,0 @@
// Shim for scripts/ui/menu/interruptButton.ts
export const getInterruptButton = window.comfyAPI.interruptButton.getInterruptButton;

View File

@ -1,2 +0,0 @@
// Shim for scripts/ui/menu/queueButton.ts
export const ComfyQueueButton = window.comfyAPI.queueButton.ComfyQueueButton;

View File

@ -1,2 +0,0 @@
// Shim for scripts/ui/menu/queueOptions.ts
export const ComfyQueueOptions = window.comfyAPI.queueOptions.ComfyQueueOptions;

View File

@ -1,3 +0,0 @@
// Shim for scripts/ui/menu/workflows.ts
export const ComfyWorkflowsMenu = window.comfyAPI.workflows.ComfyWorkflowsMenu;
export const ComfyWorkflowsContent = window.comfyAPI.workflows.ComfyWorkflowsContent;

BIN
web/templates/default.jpg vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

356
web/templates/default.json vendored Normal file
View File

@ -0,0 +1,356 @@
{
"last_node_id": 9,
"last_link_id": 9,
"nodes": [
{
"id": 7,
"type": "CLIPTextEncode",
"pos": [
413,
389
],
"size": [
425.27801513671875,
180.6060791015625
],
"flags": {},
"order": 3,
"mode": 0,
"inputs": [
{
"name": "clip",
"type": "CLIP",
"link": 5
}
],
"outputs": [
{
"name": "CONDITIONING",
"type": "CONDITIONING",
"links": [
6
],
"slot_index": 0
}
],
"properties": {},
"widgets_values": [
"text, watermark"
]
},
{
"id": 6,
"type": "CLIPTextEncode",
"pos": [
415,
186
],
"size": [
422.84503173828125,
164.31304931640625
],
"flags": {},
"order": 2,
"mode": 0,
"inputs": [
{
"name": "clip",
"type": "CLIP",
"link": 3
}
],
"outputs": [
{
"name": "CONDITIONING",
"type": "CONDITIONING",
"links": [
4
],
"slot_index": 0
}
],
"properties": {},
"widgets_values": [
"beautiful scenery nature glass bottle landscape, , purple galaxy bottle,"
]
},
{
"id": 5,
"type": "EmptyLatentImage",
"pos": [
473,
609
],
"size": [
315,
106
],
"flags": {},
"order": 1,
"mode": 0,
"outputs": [
{
"name": "LATENT",
"type": "LATENT",
"links": [
2
],
"slot_index": 0
}
],
"properties": {},
"widgets_values": [
512,
512,
1
]
},
{
"id": 3,
"type": "KSampler",
"pos": [
863,
186
],
"size": [
315,
262
],
"flags": {},
"order": 4,
"mode": 0,
"inputs": [
{
"name": "model",
"type": "MODEL",
"link": 1
},
{
"name": "positive",
"type": "CONDITIONING",
"link": 4
},
{
"name": "negative",
"type": "CONDITIONING",
"link": 6
},
{
"name": "latent_image",
"type": "LATENT",
"link": 2
}
],
"outputs": [
{
"name": "LATENT",
"type": "LATENT",
"links": [
7
],
"slot_index": 0
}
],
"properties": {},
"widgets_values": [
156680208700286,
true,
20,
8,
"euler",
"normal",
1
]
},
{
"id": 8,
"type": "VAEDecode",
"pos": [
1209,
188
],
"size": [
210,
46
],
"flags": {},
"order": 5,
"mode": 0,
"inputs": [
{
"name": "samples",
"type": "LATENT",
"link": 7
},
{
"name": "vae",
"type": "VAE",
"link": 8
}
],
"outputs": [
{
"name": "IMAGE",
"type": "IMAGE",
"links": [
9
],
"slot_index": 0
}
],
"properties": {}
},
{
"id": 9,
"type": "SaveImage",
"pos": [
1451,
189
],
"size": [
210,
26
],
"flags": {},
"order": 6,
"mode": 0,
"inputs": [
{
"name": "images",
"type": "IMAGE",
"link": 9
}
],
"properties": {}
},
{
"id": 4,
"type": "CheckpointLoaderSimple",
"pos": [
26,
474
],
"size": [
315,
98
],
"flags": {},
"order": 0,
"mode": 0,
"outputs": [
{
"name": "MODEL",
"type": "MODEL",
"links": [
1
],
"slot_index": 0
},
{
"name": "CLIP",
"type": "CLIP",
"links": [
3,
5
],
"slot_index": 1
},
{
"name": "VAE",
"type": "VAE",
"links": [
8
],
"slot_index": 2
}
],
"properties": {},
"widgets_values": [
"v1-5-pruned-emaonly.safetensors"
]
}
],
"links": [
[
1,
4,
0,
3,
0,
"MODEL"
],
[
2,
5,
0,
3,
3,
"LATENT"
],
[
3,
4,
1,
6,
0,
"CLIP"
],
[
4,
6,
0,
3,
1,
"CONDITIONING"
],
[
5,
4,
1,
7,
0,
"CLIP"
],
[
6,
7,
0,
3,
2,
"CONDITIONING"
],
[
7,
3,
0,
8,
0,
"LATENT"
],
[
8,
4,
2,
8,
1,
"VAE"
],
[
9,
8,
0,
9,
0,
"IMAGE"
]
],
"groups": [],
"config": {},
"extra": {},
"version": 0.4,
"models": [{
"name": "v1-5-pruned-emaonly.safetensors",
"url": "https://huggingface.co/Comfy-Org/stable-diffusion-v1-5-archive/resolve/main/v1-5-pruned-emaonly.safetensors?download=true",
"directory": "checkpoints"
}]
}

BIN
web/templates/flux_schnell.jpg vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

420
web/templates/flux_schnell.json vendored Normal file
View File

@ -0,0 +1,420 @@
{
"last_node_id": 36,
"last_link_id": 58,
"nodes": [
{
"id": 33,
"type": "CLIPTextEncode",
"pos": [
390,
400
],
"size": {
"0": 422.84503173828125,
"1": 164.31304931640625
},
"flags": {
"collapsed": true
},
"order": 4,
"mode": 0,
"inputs": [
{
"name": "clip",
"type": "CLIP",
"link": 54,
"slot_index": 0
}
],
"outputs": [
{
"name": "CONDITIONING",
"type": "CONDITIONING",
"links": [
55
],
"slot_index": 0
}
],
"title": "CLIP Text Encode (Negative Prompt)",
"properties": {
"Node name for S&R": "CLIPTextEncode"
},
"widgets_values": [
""
],
"color": "#322",
"bgcolor": "#533"
},
{
"id": 27,
"type": "EmptySD3LatentImage",
"pos": [
471,
455
],
"size": {
"0": 315,
"1": 106
},
"flags": {},
"order": 0,
"mode": 0,
"outputs": [
{
"name": "LATENT",
"type": "LATENT",
"links": [
51
],
"shape": 3,
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "EmptySD3LatentImage"
},
"widgets_values": [
1024,
1024,
1
],
"color": "#323",
"bgcolor": "#535"
},
{
"id": 8,
"type": "VAEDecode",
"pos": [
1151,
195
],
"size": {
"0": 210,
"1": 46
},
"flags": {},
"order": 6,
"mode": 0,
"inputs": [
{
"name": "samples",
"type": "LATENT",
"link": 52
},
{
"name": "vae",
"type": "VAE",
"link": 46
}
],
"outputs": [
{
"name": "IMAGE",
"type": "IMAGE",
"links": [
9
],
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "VAEDecode"
}
},
{
"id": 9,
"type": "SaveImage",
"pos": [
1375,
194
],
"size": {
"0": 985.3012084960938,
"1": 1060.3828125
},
"flags": {},
"order": 7,
"mode": 0,
"inputs": [
{
"name": "images",
"type": "IMAGE",
"link": 9
}
],
"properties": {},
"widgets_values": [
"ComfyUI"
]
},
{
"id": 31,
"type": "KSampler",
"pos": [
816,
192
],
"size": {
"0": 315,
"1": 262
},
"flags": {},
"order": 5,
"mode": 0,
"inputs": [
{
"name": "model",
"type": "MODEL",
"link": 47
},
{
"name": "positive",
"type": "CONDITIONING",
"link": 58
},
{
"name": "negative",
"type": "CONDITIONING",
"link": 55
},
{
"name": "latent_image",
"type": "LATENT",
"link": 51
}
],
"outputs": [
{
"name": "LATENT",
"type": "LATENT",
"links": [
52
],
"shape": 3,
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "KSampler"
},
"widgets_values": [
173805153958730,
"randomize",
4,
1,
"euler",
"simple",
1
]
},
{
"id": 30,
"type": "CheckpointLoaderSimple",
"pos": [
48,
192
],
"size": {
"0": 315,
"1": 98
},
"flags": {},
"order": 1,
"mode": 0,
"outputs": [
{
"name": "MODEL",
"type": "MODEL",
"links": [
47
],
"shape": 3,
"slot_index": 0
},
{
"name": "CLIP",
"type": "CLIP",
"links": [
45,
54
],
"shape": 3,
"slot_index": 1
},
{
"name": "VAE",
"type": "VAE",
"links": [
46
],
"shape": 3,
"slot_index": 2
}
],
"properties": {
"Node name for S&R": "CheckpointLoaderSimple"
},
"widgets_values": [
"flux1-schnell-fp8.safetensors"
]
},
{
"id": 6,
"type": "CLIPTextEncode",
"pos": [
384,
192
],
"size": {
"0": 422.84503173828125,
"1": 164.31304931640625
},
"flags": {},
"order": 3,
"mode": 0,
"inputs": [
{
"name": "clip",
"type": "CLIP",
"link": 45
}
],
"outputs": [
{
"name": "CONDITIONING",
"type": "CONDITIONING",
"links": [
58
],
"slot_index": 0
}
],
"title": "CLIP Text Encode (Positive Prompt)",
"properties": {
"Node name for S&R": "CLIPTextEncode"
},
"widgets_values": [
"a bottle with a beautiful rainbow galaxy inside it on top of a wooden table in the middle of a modern kitchen beside a plate of vegetables and mushrooms and a wine glasse that contains a planet earth with a plate with a half eaten apple pie on it"
],
"color": "#232",
"bgcolor": "#353"
},
{
"id": 34,
"type": "Note",
"pos": [
831,
501
],
"size": {
"0": 282.8617858886719,
"1": 164.08004760742188
},
"flags": {},
"order": 2,
"mode": 0,
"properties": {
"text": ""
},
"widgets_values": [
"Note that Flux dev and schnell do not have any negative prompt so CFG should be set to 1.0. Setting CFG to 1.0 means the negative prompt is ignored.\n\nThe schnell model is a distilled model that can generate a good image with only 4 steps."
],
"color": "#432",
"bgcolor": "#653"
}
],
"links": [
[
9,
8,
0,
9,
0,
"IMAGE"
],
[
45,
30,
1,
6,
0,
"CLIP"
],
[
46,
30,
2,
8,
1,
"VAE"
],
[
47,
30,
0,
31,
0,
"MODEL"
],
[
51,
27,
0,
31,
3,
"LATENT"
],
[
52,
31,
0,
8,
0,
"LATENT"
],
[
54,
30,
1,
33,
0,
"CLIP"
],
[
55,
33,
0,
31,
2,
"CONDITIONING"
],
[
58,
6,
0,
31,
1,
"CONDITIONING"
]
],
"groups": [],
"config": {},
"extra": {
"ds": {
"scale": 1.1,
"offset": [
0.6836674124529055,
1.8290357611967831
]
}
},
"models": [
{
"name": "flux1-schnell-fp8.safetensors",
"url": "https://huggingface.co/Comfy-Org/flux1-schnell/resolve/main/flux1-schnell-fp8.safetensors?download=true",
"directory": "checkpoints"
}
],
"version": 0.4
}

BIN
web/templates/image2image.jpg vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

447
web/templates/image2image.json vendored Normal file
View File

@ -0,0 +1,447 @@
{
"last_node_id": 14,
"last_link_id": 17,
"nodes": [
{
"id": 7,
"type": "CLIPTextEncode",
"pos": [
413,
389
],
"size": {
"0": 425.27801513671875,
"1": 180.6060791015625
},
"flags": {},
"order": 3,
"mode": 0,
"inputs": [
{
"name": "clip",
"type": "CLIP",
"link": 15
}
],
"outputs": [
{
"name": "CONDITIONING",
"type": "CONDITIONING",
"links": [
6
],
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "CLIPTextEncode"
},
"widgets_values": [
"watermark, text\n"
]
},
{
"id": 6,
"type": "CLIPTextEncode",
"pos": [
415,
186
],
"size": {
"0": 422.84503173828125,
"1": 164.31304931640625
},
"flags": {},
"order": 2,
"mode": 0,
"inputs": [
{
"name": "clip",
"type": "CLIP",
"link": 14
}
],
"outputs": [
{
"name": "CONDITIONING",
"type": "CONDITIONING",
"links": [
4
],
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "CLIPTextEncode"
},
"widgets_values": [
"photograph of victorian woman with wings, sky clouds, meadow grass\n"
]
},
{
"id": 8,
"type": "VAEDecode",
"pos": [
1209,
188
],
"size": {
"0": 210,
"1": 46
},
"flags": {},
"order": 6,
"mode": 0,
"inputs": [
{
"name": "samples",
"type": "LATENT",
"link": 7
},
{
"name": "vae",
"type": "VAE",
"link": 17
}
],
"outputs": [
{
"name": "IMAGE",
"type": "IMAGE",
"links": [
9
],
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "VAEDecode"
}
},
{
"id": 9,
"type": "SaveImage",
"pos": [
1451,
189
],
"size": {
"0": 210,
"1": 58
},
"flags": {},
"order": 7,
"mode": 0,
"inputs": [
{
"name": "images",
"type": "IMAGE",
"link": 9
}
],
"properties": {},
"widgets_values": [
"ComfyUI"
]
},
{
"id": 10,
"type": "LoadImage",
"pos": [
215.9799597167969,
703.6800268554688
],
"size": [
315,
314.00002670288086
],
"flags": {},
"order": 0,
"mode": 0,
"outputs": [
{
"name": "IMAGE",
"type": "IMAGE",
"links": [
10
],
"slot_index": 0
},
{
"name": "MASK",
"type": "MASK",
"links": null,
"shape": 3
}
],
"properties": {
"Node name for S&R": "LoadImage"
},
"widgets_values": [
"example.png",
"image"
]
},
{
"id": 12,
"type": "VAEEncode",
"pos": [
614.979959716797,
707.6800268554688
],
"size": {
"0": 210,
"1": 46
},
"flags": {},
"order": 4,
"mode": 0,
"inputs": [
{
"name": "pixels",
"type": "IMAGE",
"link": 10
},
{
"name": "vae",
"type": "VAE",
"link": 16
}
],
"outputs": [
{
"name": "LATENT",
"type": "LATENT",
"links": [
11
],
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "VAEEncode"
}
},
{
"id": 3,
"type": "KSampler",
"pos": [
863,
186
],
"size": {
"0": 315,
"1": 262
},
"flags": {},
"order": 5,
"mode": 0,
"inputs": [
{
"name": "model",
"type": "MODEL",
"link": 13
},
{
"name": "positive",
"type": "CONDITIONING",
"link": 4
},
{
"name": "negative",
"type": "CONDITIONING",
"link": 6
},
{
"name": "latent_image",
"type": "LATENT",
"link": 11
}
],
"outputs": [
{
"name": "LATENT",
"type": "LATENT",
"links": [
7
],
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "KSampler"
},
"widgets_values": [
280823642470253,
"randomize",
20,
8,
"dpmpp_2m",
"normal",
0.8700000000000001
]
},
{
"id": 14,
"type": "CheckpointLoaderSimple",
"pos": [
19,
433
],
"size": {
"0": 315,
"1": 98
},
"flags": {},
"order": 1,
"mode": 0,
"outputs": [
{
"name": "MODEL",
"type": "MODEL",
"links": [
13
],
"shape": 3,
"slot_index": 0
},
{
"name": "CLIP",
"type": "CLIP",
"links": [
14,
15
],
"shape": 3,
"slot_index": 1
},
{
"name": "VAE",
"type": "VAE",
"links": [
16,
17
],
"shape": 3,
"slot_index": 2
}
],
"properties": {
"Node name for S&R": "CheckpointLoaderSimple"
},
"widgets_values": [
"v1-5-pruned-emaonly.safetensors"
]
}
],
"links": [
[
4,
6,
0,
3,
1,
"CONDITIONING"
],
[
6,
7,
0,
3,
2,
"CONDITIONING"
],
[
7,
3,
0,
8,
0,
"LATENT"
],
[
9,
8,
0,
9,
0,
"IMAGE"
],
[
10,
10,
0,
12,
0,
"IMAGE"
],
[
11,
12,
0,
3,
3,
"LATENT"
],
[
13,
14,
0,
3,
0,
"MODEL"
],
[
14,
14,
1,
6,
0,
"CLIP"
],
[
15,
14,
1,
7,
0,
"CLIP"
],
[
16,
14,
2,
12,
1,
"VAE"
],
[
17,
14,
2,
8,
1,
"VAE"
]
],
"groups": [
{
"title": "Loading images",
"bounding": [
150,
630,
726,
171
],
"color": "#3f789e"
}
],
"config": {},
"extra": {},
"version": 0.4,
"models": [{
"name": "v1-5-pruned-emaonly.safetensors",
"url": "https://huggingface.co/Comfy-Org/stable-diffusion-v1-5-archive/resolve/main/v1-5-pruned-emaonly.safetensors?download=true",
"directory": "checkpoints"
}]
}

BIN
web/templates/upscale.jpg vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

652
web/templates/upscale.json vendored Normal file
View File

@ -0,0 +1,652 @@
{
"last_node_id": 16,
"last_link_id": 23,
"nodes": [
{
"id": 8,
"type": "VAEDecode",
"pos": [
1235.7215957031258,
577.1878720703122
],
"size": {
"0": 210,
"1": 46
},
"flags": {},
"order": 5,
"mode": 0,
"inputs": [
{
"name": "samples",
"type": "LATENT",
"link": 7
},
{
"name": "vae",
"type": "VAE",
"link": 21
}
],
"outputs": [
{
"name": "IMAGE",
"type": "IMAGE",
"links": [
9
],
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "VAEDecode"
}
},
{
"id": 10,
"type": "LatentUpscale",
"pos": [
1238,
170
],
"size": {
"0": 315,
"1": 130
},
"flags": {},
"order": 6,
"mode": 0,
"inputs": [
{
"name": "samples",
"type": "LATENT",
"link": 10
}
],
"outputs": [
{
"name": "LATENT",
"type": "LATENT",
"links": [
14
]
}
],
"properties": {
"Node name for S&R": "LatentUpscale"
},
"widgets_values": [
"nearest-exact",
1152,
1152,
"disabled"
]
},
{
"id": 13,
"type": "VAEDecode",
"pos": [
1961,
125
],
"size": {
"0": 210,
"1": 46
},
"flags": {},
"order": 9,
"mode": 0,
"inputs": [
{
"name": "samples",
"type": "LATENT",
"link": 15
},
{
"name": "vae",
"type": "VAE",
"link": 22
}
],
"outputs": [
{
"name": "IMAGE",
"type": "IMAGE",
"links": [
17
],
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "VAEDecode"
}
},
{
"id": 6,
"type": "CLIPTextEncode",
"pos": [
374,
171
],
"size": {
"0": 422.84503173828125,
"1": 164.31304931640625
},
"flags": {},
"order": 2,
"mode": 0,
"inputs": [
{
"name": "clip",
"type": "CLIP",
"link": 19
}
],
"outputs": [
{
"name": "CONDITIONING",
"type": "CONDITIONING",
"links": [
4,
12
],
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "CLIPTextEncode"
},
"widgets_values": [
"masterpiece HDR victorian portrait painting of woman, blonde hair, mountain nature, blue sky\n"
]
},
{
"id": 7,
"type": "CLIPTextEncode",
"pos": [
377,
381
],
"size": {
"0": 425.27801513671875,
"1": 180.6060791015625
},
"flags": {},
"order": 3,
"mode": 0,
"inputs": [
{
"name": "clip",
"type": "CLIP",
"link": 20
}
],
"outputs": [
{
"name": "CONDITIONING",
"type": "CONDITIONING",
"links": [
6,
13
],
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "CLIPTextEncode"
},
"widgets_values": [
"bad hands, text, watermark\n"
]
},
{
"id": 5,
"type": "EmptyLatentImage",
"pos": [
435,
600
],
"size": {
"0": 315,
"1": 106
},
"flags": {},
"order": 0,
"mode": 0,
"outputs": [
{
"name": "LATENT",
"type": "LATENT",
"links": [
2
],
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "EmptyLatentImage"
},
"widgets_values": [
768,
768,
1
]
},
{
"id": 11,
"type": "KSampler",
"pos": [
1585,
114
],
"size": {
"0": 315,
"1": 262
},
"flags": {},
"order": 8,
"mode": 0,
"inputs": [
{
"name": "model",
"type": "MODEL",
"link": 23,
"slot_index": 0
},
{
"name": "positive",
"type": "CONDITIONING",
"link": 12,
"slot_index": 1
},
{
"name": "negative",
"type": "CONDITIONING",
"link": 13,
"slot_index": 2
},
{
"name": "latent_image",
"type": "LATENT",
"link": 14,
"slot_index": 3
}
],
"outputs": [
{
"name": "LATENT",
"type": "LATENT",
"links": [
15
],
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "KSampler"
},
"widgets_values": [
469771404043268,
"randomize",
14,
8,
"dpmpp_2m",
"simple",
0.5
]
},
{
"id": 12,
"type": "SaveImage",
"pos": [
2203,
123
],
"size": {
"0": 407.53717041015625,
"1": 468.13226318359375
},
"flags": {},
"order": 10,
"mode": 0,
"inputs": [
{
"name": "images",
"type": "IMAGE",
"link": 17
}
],
"properties": {},
"widgets_values": [
"ComfyUI"
]
},
{
"id": 3,
"type": "KSampler",
"pos": [
845,
172
],
"size": {
"0": 315,
"1": 262
},
"flags": {},
"order": 4,
"mode": 0,
"inputs": [
{
"name": "model",
"type": "MODEL",
"link": 18
},
{
"name": "positive",
"type": "CONDITIONING",
"link": 4
},
{
"name": "negative",
"type": "CONDITIONING",
"link": 6
},
{
"name": "latent_image",
"type": "LATENT",
"link": 2
}
],
"outputs": [
{
"name": "LATENT",
"type": "LATENT",
"links": [
7,
10
],
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "KSampler"
},
"widgets_values": [
89848141647836,
"randomize",
12,
8,
"dpmpp_sde",
"normal",
1
]
},
{
"id": 16,
"type": "CheckpointLoaderSimple",
"pos": [
24,
315
],
"size": {
"0": 315,
"1": 98
},
"flags": {},
"order": 1,
"mode": 0,
"outputs": [
{
"name": "MODEL",
"type": "MODEL",
"links": [
18,
23
],
"slot_index": 0
},
{
"name": "CLIP",
"type": "CLIP",
"links": [
19,
20
],
"slot_index": 1
},
{
"name": "VAE",
"type": "VAE",
"links": [
21,
22
],
"slot_index": 2
}
],
"properties": {
"Node name for S&R": "CheckpointLoaderSimple"
},
"widgets_values": [
"v2-1_768-ema-pruned.safetensors"
]
},
{
"id": 9,
"type": "SaveImage",
"pos": [
1495.7215957031258,
576.1878720703122
],
"size": [
232.9403301043692,
282.4336258387117
],
"flags": {},
"order": 7,
"mode": 0,
"inputs": [
{
"name": "images",
"type": "IMAGE",
"link": 9
}
],
"properties": {},
"widgets_values": [
"ComfyUI"
]
}
],
"links": [
[
2,
5,
0,
3,
3,
"LATENT"
],
[
4,
6,
0,
3,
1,
"CONDITIONING"
],
[
6,
7,
0,
3,
2,
"CONDITIONING"
],
[
7,
3,
0,
8,
0,
"LATENT"
],
[
9,
8,
0,
9,
0,
"IMAGE"
],
[
10,
3,
0,
10,
0,
"LATENT"
],
[
12,
6,
0,
11,
1,
"CONDITIONING"
],
[
13,
7,
0,
11,
2,
"CONDITIONING"
],
[
14,
10,
0,
11,
3,
"LATENT"
],
[
15,
11,
0,
13,
0,
"LATENT"
],
[
17,
13,
0,
12,
0,
"IMAGE"
],
[
18,
16,
0,
3,
0,
"MODEL"
],
[
19,
16,
1,
6,
0,
"CLIP"
],
[
20,
16,
1,
7,
0,
"CLIP"
],
[
21,
16,
2,
8,
1,
"VAE"
],
[
22,
16,
2,
13,
1,
"VAE"
],
[
23,
16,
0,
11,
0,
"MODEL"
]
],
"groups": [
{
"title": "Txt2Img",
"bounding": [
-1,
30,
1211,
708
],
"color": "#a1309b"
},
{
"title": "Save Intermediate Image",
"bounding": [
1225,
500,
516,
196
],
"color": "#3f789e"
},
{
"title": "Hires Fix",
"bounding": [
1224,
29,
710,
464
],
"color": "#b58b2a"
},
{
"title": "Save Final Image",
"bounding": [
1949,
31,
483,
199
],
"color": "#3f789e"
}
],
"config": {},
"extra": {},
"version": 0.4,
"models": [
{
"name": "v2-1_768-ema-pruned.safetensors",
"url": "https://huggingface.co/stabilityai/stable-diffusion-2-1/resolve/main/v2-1_768-ema-pruned.safetensors?download=true",
"directory": "checkpoints"
}
]
}