Migrate ER-SDE from VE to VP algorithm and add its sampler node (#8744)

Apply alpha scaling in the algorithm for reverse-time SDE and add custom ER-SDE sampler node for other solver types (SDE, ODE).
This commit is contained in:
chaObserv 2025-07-01 14:38:52 +08:00 committed by GitHub
parent f02de13316
commit b22e97dcfa
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 80 additions and 27 deletions

View File

@ -1447,14 +1447,15 @@ def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None,
old_d = d old_d = d
return x return x
@torch.no_grad() @torch.no_grad()
def sample_gradient_estimation_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2.): def sample_gradient_estimation_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2.):
return sample_gradient_estimation(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, ge_gamma=ge_gamma, cfg_pp=True) return sample_gradient_estimation(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, ge_gamma=ge_gamma, cfg_pp=True)
@torch.no_grad() @torch.no_grad()
def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., noise_sampler=None, noise_scaler=None, max_stage=3): def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1.0, noise_sampler=None, noise_scaler=None, max_stage=3):
""" """Extended Reverse-Time SDE solver (VP ER-SDE-Solver-3). arXiv: https://arxiv.org/abs/2309.06169.
Extended Reverse-Time SDE solver (VE ER-SDE-Solver-3). Arxiv: https://arxiv.org/abs/2309.06169.
Code reference: https://github.com/QinpengCui/ER-SDE-Solver/blob/main/er_sde_solver.py. Code reference: https://github.com/QinpengCui/ER-SDE-Solver/blob/main/er_sde_solver.py.
""" """
extra_args = {} if extra_args is None else extra_args extra_args = {} if extra_args is None else extra_args
@ -1462,12 +1463,18 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]]) s_in = x.new_ones([x.shape[0]])
def default_noise_scaler(sigma): def default_er_sde_noise_scaler(x):
return sigma * ((sigma ** 0.3).exp() + 10.0) return x * ((x ** 0.3).exp() + 10.0)
noise_scaler = default_noise_scaler if noise_scaler is None else noise_scaler
noise_scaler = default_er_sde_noise_scaler if noise_scaler is None else noise_scaler
num_integration_points = 200.0 num_integration_points = 200.0
point_indice = torch.arange(0, num_integration_points, dtype=torch.float32, device=x.device) point_indice = torch.arange(0, num_integration_points, dtype=torch.float32, device=x.device)
model_sampling = model.inner_model.model_patcher.get_model_object("model_sampling")
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
half_log_snrs = sigma_to_half_log_snr(sigmas, model_sampling)
er_lambdas = half_log_snrs.neg().exp() # er_lambda_t = sigma_t / alpha_t
old_denoised = None old_denoised = None
old_denoised_d = None old_denoised_d = None
@ -1478,32 +1485,36 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
stage_used = min(max_stage, i + 1) stage_used = min(max_stage, i + 1)
if sigmas[i + 1] == 0: if sigmas[i + 1] == 0:
x = denoised x = denoised
elif stage_used == 1:
r = noise_scaler(sigmas[i + 1]) / noise_scaler(sigmas[i])
x = r * x + (1 - r) * denoised
else: else:
r = noise_scaler(sigmas[i + 1]) / noise_scaler(sigmas[i]) er_lambda_s, er_lambda_t = er_lambdas[i], er_lambdas[i + 1]
x = r * x + (1 - r) * denoised alpha_s = sigmas[i] / er_lambda_s
alpha_t = sigmas[i + 1] / er_lambda_t
r_alpha = alpha_t / alpha_s
r = noise_scaler(er_lambda_t) / noise_scaler(er_lambda_s)
dt = sigmas[i + 1] - sigmas[i] # Stage 1 Euler
sigma_step_size = -dt / num_integration_points x = r_alpha * r * x + alpha_t * (1 - r) * denoised
sigma_pos = sigmas[i + 1] + point_indice * sigma_step_size
scaled_pos = noise_scaler(sigma_pos)
# Stage 2 if stage_used >= 2:
s = torch.sum(1 / scaled_pos) * sigma_step_size dt = er_lambda_t - er_lambda_s
denoised_d = (denoised - old_denoised) / (sigmas[i] - sigmas[i - 1]) lambda_step_size = -dt / num_integration_points
x = x + (dt + s * noise_scaler(sigmas[i + 1])) * denoised_d lambda_pos = er_lambda_t + point_indice * lambda_step_size
scaled_pos = noise_scaler(lambda_pos)
if stage_used >= 3: # Stage 2
# Stage 3 s = torch.sum(1 / scaled_pos) * lambda_step_size
s_u = torch.sum((sigma_pos - sigmas[i]) / scaled_pos) * sigma_step_size denoised_d = (denoised - old_denoised) / (er_lambda_s - er_lambdas[i - 1])
denoised_u = (denoised_d - old_denoised_d) / ((sigmas[i] - sigmas[i - 2]) / 2) x = x + alpha_t * (dt + s * noise_scaler(er_lambda_t)) * denoised_d
x = x + ((dt ** 2) / 2 + s_u * noise_scaler(sigmas[i + 1])) * denoised_u
old_denoised_d = denoised_d
if s_noise != 0 and sigmas[i + 1] > 0: if stage_used >= 3:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * (sigmas[i + 1] ** 2 - sigmas[i] ** 2 * r ** 2).sqrt().nan_to_num(nan=0.0) # Stage 3
s_u = torch.sum((lambda_pos - er_lambda_s) / scaled_pos) * lambda_step_size
denoised_u = (denoised_d - old_denoised_d) / ((er_lambda_s - er_lambdas[i - 2]) / 2)
x = x + alpha_t * ((dt ** 2) / 2 + s_u * noise_scaler(er_lambda_t)) * denoised_u
old_denoised_d = denoised_d
if s_noise > 0:
x = x + alpha_t * noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * (er_lambda_t ** 2 - er_lambda_s ** 2 * r ** 2).sqrt().nan_to_num(nan=0.0)
old_denoised = denoised old_denoised = denoised
return x return x

View File

@ -2,6 +2,7 @@ import math
import comfy.samplers import comfy.samplers
import comfy.sample import comfy.sample
from comfy.k_diffusion import sampling as k_diffusion_sampling from comfy.k_diffusion import sampling as k_diffusion_sampling
from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict
import latent_preview import latent_preview
import torch import torch
import comfy.utils import comfy.utils
@ -480,6 +481,46 @@ class SamplerDPMAdaptative:
"s_noise":s_noise }) "s_noise":s_noise })
return (sampler, ) return (sampler, )
class SamplerER_SDE(ComfyNodeABC):
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"solver_type": (IO.COMBO, {"options": ["ER-SDE", "Reverse-time SDE", "ODE"]}),
"max_stage": (IO.INT, {"default": 3, "min": 1, "max": 3}),
"eta": (
IO.FLOAT,
{"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01, "round": False, "tooltip": "Stochastic strength of reverse-time SDE.\nWhen eta=0, it reduces to deterministic ODE. This setting doesn't apply to ER-SDE solver type."},
),
"s_noise": (IO.FLOAT, {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01, "round": False}),
}
}
RETURN_TYPES = (IO.SAMPLER,)
CATEGORY = "sampling/custom_sampling/samplers"
FUNCTION = "get_sampler"
def get_sampler(self, solver_type, max_stage, eta, s_noise):
if solver_type == "ODE" or (solver_type == "Reverse-time SDE" and eta == 0):
eta = 0
s_noise = 0
def reverse_time_sde_noise_scaler(x):
return x ** (eta + 1)
if solver_type == "ER-SDE":
# Use the default one in sample_er_sde()
noise_scaler = None
else:
noise_scaler = reverse_time_sde_noise_scaler
sampler_name = "er_sde"
sampler = comfy.samplers.ksampler(sampler_name, {"s_noise": s_noise, "noise_scaler": noise_scaler, "max_stage": max_stage})
return (sampler,)
class Noise_EmptyNoise: class Noise_EmptyNoise:
def __init__(self): def __init__(self):
self.seed = 0 self.seed = 0
@ -787,6 +828,7 @@ NODE_CLASS_MAPPINGS = {
"SamplerDPMPP_SDE": SamplerDPMPP_SDE, "SamplerDPMPP_SDE": SamplerDPMPP_SDE,
"SamplerDPMPP_2S_Ancestral": SamplerDPMPP_2S_Ancestral, "SamplerDPMPP_2S_Ancestral": SamplerDPMPP_2S_Ancestral,
"SamplerDPMAdaptative": SamplerDPMAdaptative, "SamplerDPMAdaptative": SamplerDPMAdaptative,
"SamplerER_SDE": SamplerER_SDE,
"SplitSigmas": SplitSigmas, "SplitSigmas": SplitSigmas,
"SplitSigmasDenoise": SplitSigmasDenoise, "SplitSigmasDenoise": SplitSigmasDenoise,
"FlipSigmas": FlipSigmas, "FlipSigmas": FlipSigmas,