mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-11 02:15:17 +00:00
Own BertModel implementation that works with lowvram.
This commit is contained in:
parent
25b51b1a8b
commit
a9ac56fc0d
139
comfy/text_encoders/bert.py
Normal file
139
comfy/text_encoders/bert.py
Normal file
@ -0,0 +1,139 @@
|
||||
import torch
|
||||
from comfy.ldm.modules.attention import optimized_attention_for_device
|
||||
|
||||
class BertAttention(torch.nn.Module):
|
||||
def __init__(self, embed_dim, heads, dtype, device, operations):
|
||||
super().__init__()
|
||||
|
||||
self.heads = heads
|
||||
self.query = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
self.key = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
self.value = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
|
||||
def forward(self, x, mask=None, optimized_attention=None):
|
||||
q = self.query(x)
|
||||
k = self.key(x)
|
||||
v = self.value(x)
|
||||
|
||||
out = optimized_attention(q, k, v, self.heads, mask)
|
||||
return out
|
||||
|
||||
class BertOutput(torch.nn.Module):
|
||||
def __init__(self, input_dim, output_dim, layer_norm_eps, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.dense = operations.Linear(input_dim, output_dim, dtype=dtype, device=device)
|
||||
self.LayerNorm = operations.LayerNorm(output_dim, eps=layer_norm_eps, dtype=dtype, device=device)
|
||||
# self.dropout = nn.Dropout(0.0)
|
||||
|
||||
def forward(self, x, y):
|
||||
x = self.dense(x)
|
||||
# hidden_states = self.dropout(hidden_states)
|
||||
x = self.LayerNorm(x + y)
|
||||
return x
|
||||
|
||||
class BertAttentionBlock(torch.nn.Module):
|
||||
def __init__(self, embed_dim, heads, layer_norm_eps, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.self = BertAttention(embed_dim, heads, dtype, device, operations)
|
||||
self.output = BertOutput(embed_dim, embed_dim, layer_norm_eps, dtype, device, operations)
|
||||
|
||||
def forward(self, x, mask, optimized_attention):
|
||||
y = self.self(x, mask, optimized_attention)
|
||||
return self.output(y, x)
|
||||
|
||||
class BertIntermediate(torch.nn.Module):
|
||||
def __init__(self, embed_dim, intermediate_dim, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.dense = operations.Linear(embed_dim, intermediate_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.dense(x)
|
||||
return torch.nn.functional.gelu(x)
|
||||
|
||||
|
||||
class BertBlock(torch.nn.Module):
|
||||
def __init__(self, embed_dim, intermediate_dim, heads, layer_norm_eps, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.attention = BertAttentionBlock(embed_dim, heads, layer_norm_eps, dtype, device, operations)
|
||||
self.intermediate = BertIntermediate(embed_dim, intermediate_dim, dtype, device, operations)
|
||||
self.output = BertOutput(intermediate_dim, embed_dim, layer_norm_eps, dtype, device, operations)
|
||||
|
||||
def forward(self, x, mask, optimized_attention):
|
||||
x = self.attention(x, mask, optimized_attention)
|
||||
y = self.intermediate(x)
|
||||
return self.output(y, x)
|
||||
|
||||
class BertEncoder(torch.nn.Module):
|
||||
def __init__(self, num_layers, embed_dim, intermediate_dim, heads, layer_norm_eps, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.layer = torch.nn.ModuleList([BertBlock(embed_dim, intermediate_dim, heads, layer_norm_eps, dtype, device, operations) for i in range(num_layers)])
|
||||
|
||||
def forward(self, x, mask=None, intermediate_output=None):
|
||||
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
|
||||
|
||||
if intermediate_output is not None:
|
||||
if intermediate_output < 0:
|
||||
intermediate_output = len(self.layer) + intermediate_output
|
||||
|
||||
intermediate = None
|
||||
for i, l in enumerate(self.layer):
|
||||
x = l(x, mask, optimized_attention)
|
||||
if i == intermediate_output:
|
||||
intermediate = x.clone()
|
||||
return x, intermediate
|
||||
|
||||
class BertEmbeddings(torch.nn.Module):
|
||||
def __init__(self, vocab_size, max_position_embeddings, type_vocab_size, pad_token_id, embed_dim, layer_norm_eps, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.word_embeddings = torch.nn.Embedding(vocab_size, embed_dim, padding_idx=pad_token_id, dtype=dtype, device=device)
|
||||
self.position_embeddings = torch.nn.Embedding(max_position_embeddings, embed_dim, dtype=dtype, device=device)
|
||||
self.token_type_embeddings = torch.nn.Embedding(type_vocab_size, embed_dim, dtype=dtype, device=device)
|
||||
|
||||
self.LayerNorm = operations.LayerNorm(embed_dim, eps=layer_norm_eps, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, input_tokens, token_type_ids=None):
|
||||
x = self.word_embeddings(input_tokens)
|
||||
x += self.position_embeddings.weight[:x.shape[1]]
|
||||
if token_type_ids is not None:
|
||||
x += self.token_type_embeddings(token_type_ids)
|
||||
else:
|
||||
x += self.token_type_embeddings.weight[0]
|
||||
x = self.LayerNorm(x)
|
||||
return x
|
||||
|
||||
|
||||
class BertModel_(torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
embed_dim = config_dict["hidden_size"]
|
||||
layer_norm_eps = config_dict["layer_norm_eps"]
|
||||
|
||||
self.embeddings = BertEmbeddings(config_dict["vocab_size"], config_dict["max_position_embeddings"], config_dict["type_vocab_size"], config_dict["pad_token_id"], embed_dim, layer_norm_eps, dtype, device, operations)
|
||||
self.encoder = BertEncoder(config_dict["num_hidden_layers"], embed_dim, config_dict["intermediate_size"], config_dict["num_attention_heads"], layer_norm_eps, dtype, device, operations)
|
||||
|
||||
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True):
|
||||
x = self.embeddings(input_tokens)
|
||||
mask = None
|
||||
if attention_mask is not None:
|
||||
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
|
||||
mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
|
||||
|
||||
x, i = self.encoder(x, mask, intermediate_output)
|
||||
return x, i
|
||||
|
||||
|
||||
class BertModel(torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.bert = BertModel_(config_dict, dtype, device, operations)
|
||||
self.num_layers = config_dict["num_hidden_layers"]
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.bert.embeddings.word_embeddings
|
||||
|
||||
def set_input_embeddings(self, embeddings):
|
||||
self.bert.embeddings.word_embeddings = embeddings
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
return self.bert(*args, **kwargs)
|
@ -1,56 +1,15 @@
|
||||
from comfy import sd1_clip
|
||||
from transformers import T5TokenizerFast, BertTokenizer, BertModel, modeling_utils, BertConfig
|
||||
from transformers import BertTokenizer
|
||||
from .spiece_tokenizer import SPieceTokenizer
|
||||
from .bert import BertModel
|
||||
import comfy.text_encoders.t5
|
||||
import os
|
||||
|
||||
import torch
|
||||
import contextlib
|
||||
|
||||
@contextlib.contextmanager
|
||||
def use_comfy_ops(ops, device=None, dtype=None):
|
||||
old_torch_nn_linear = torch.nn.Linear
|
||||
force_device = device
|
||||
force_dtype = dtype
|
||||
def linear_with_dtype(in_features: int, out_features: int, bias: bool = True, device=None, dtype=None):
|
||||
if force_device is not None:
|
||||
device = force_device
|
||||
if force_dtype is not None:
|
||||
dtype = force_dtype
|
||||
return ops.Linear(in_features, out_features, bias=bias, device=device, dtype=dtype)
|
||||
|
||||
torch.nn.Linear = linear_with_dtype
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
torch.nn.Linear = old_torch_nn_linear
|
||||
|
||||
|
||||
class RobertaWrapper(torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
config = BertConfig(**config_dict)
|
||||
with use_comfy_ops(operations, device, dtype):
|
||||
with modeling_utils.no_init_weights():
|
||||
self.bert = BertModel(config, add_pooling_layer=False)
|
||||
|
||||
self.num_layers = config.num_hidden_layers
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.bert.get_input_embeddings()
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
return self.bert.set_input_embeddings(value)
|
||||
|
||||
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True):
|
||||
intermediate = None
|
||||
out = self.bert(input_ids=input_tokens, output_hidden_states=intermediate_output is not None, attention_mask=attention_mask)
|
||||
return out.last_hidden_state, intermediate, out.pooler_output
|
||||
|
||||
class HyditBertModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip.json")
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 101, "end": 102, "pad": 0}, model_class=RobertaWrapper, enable_attention_masks=True, return_attention_masks=True)
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 101, "end": 102, "pad": 0}, model_class=BertModel, enable_attention_masks=True, return_attention_masks=True)
|
||||
|
||||
class HyditBertTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
|
Loading…
Reference in New Issue
Block a user