Add kl_optimal scheduler (#6206)

* Add kl_optimal scheduler

* Rename kl_optimal_schedule to kl_optimal_scheduler to be more consistent
This commit is contained in:
blepping 2024-12-30 03:09:38 -07:00 committed by GitHub
parent d9b7cfac7e
commit a90aafafc1
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -467,6 +467,13 @@ def linear_quadratic_schedule(model_sampling, steps, threshold_noise=0.025, line
sigma_schedule = [1.0 - x for x in sigma_schedule]
return torch.FloatTensor(sigma_schedule) * model_sampling.sigma_max.cpu()
# Referenced from https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15608
def kl_optimal_scheduler(n: int, sigma_min: float, sigma_max: float) -> torch.Tensor:
adj_idxs = torch.arange(n, dtype=torch.float).div_(n - 1)
sigmas = adj_idxs.new_zeros(n + 1)
sigmas[:-1] = (adj_idxs * math.atan(sigma_min) + (1 - adj_idxs) * math.atan(sigma_max)).tan_()
return sigmas
def get_mask_aabb(masks):
if masks.numel() == 0:
return torch.zeros((0, 4), device=masks.device, dtype=torch.int)
@ -913,7 +920,7 @@ def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model
return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform", "beta", "linear_quadratic"]
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform", "beta", "linear_quadratic", "kl_optimal"]
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]
def calculate_sigmas(model_sampling, scheduler_name, steps):
@ -933,6 +940,8 @@ def calculate_sigmas(model_sampling, scheduler_name, steps):
sigmas = beta_scheduler(model_sampling, steps)
elif scheduler_name == "linear_quadratic":
sigmas = linear_quadratic_schedule(model_sampling, steps)
elif scheduler_name == "kl_optimal":
sigmas = kl_optimal_scheduler(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max))
else:
logging.error("error invalid scheduler {}".format(scheduler_name))
return sigmas