allow disabling of progress bar when sampling

This commit is contained in:
BlenderNeko 2023-04-30 18:59:58 +02:00
parent 4cea9aecda
commit a2e18b1504

View File

@ -541,7 +541,7 @@ class KSampler:
sigmas = self.calculate_sigmas(new_steps).to(self.device) sigmas = self.calculate_sigmas(new_steps).to(self.device)
self.sigmas = sigmas[-(steps + 1):] self.sigmas = sigmas[-(steps + 1):]
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None): def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False):
if sigmas is None: if sigmas is None:
sigmas = self.sigmas sigmas = self.sigmas
sigma_min = self.sigma_min sigma_min = self.sigma_min
@ -610,9 +610,9 @@ class KSampler:
with precision_scope(model_management.get_autocast_device(self.device)): with precision_scope(model_management.get_autocast_device(self.device)):
if self.sampler == "uni_pc": if self.sampler == "uni_pc":
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback) samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
elif self.sampler == "uni_pc_bh2": elif self.sampler == "uni_pc_bh2":
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2') samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
elif self.sampler == "ddim": elif self.sampler == "ddim":
timesteps = [] timesteps = []
for s in range(sigmas.shape[0]): for s in range(sigmas.shape[0]):
@ -659,10 +659,10 @@ class KSampler:
if latent_image is not None: if latent_image is not None:
noise += latent_image noise += latent_image
if self.sampler == "dpm_fast": if self.sampler == "dpm_fast":
samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], self.steps, extra_args=extra_args, callback=k_callback) samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], self.steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
elif self.sampler == "dpm_adaptive": elif self.sampler == "dpm_adaptive":
samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback) samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
else: else:
samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, extra_args=extra_args, callback=k_callback) samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
return samples.to(torch.float32) return samples.to(torch.float32)