Cleanup to support different types of inpaint models.

This commit is contained in:
comfyanonymous 2024-03-29 14:43:24 -04:00
parent 9bf6061dfc
commit 94a5a67c32

View File

@ -66,7 +66,8 @@ class BaseModel(torch.nn.Module):
self.adm_channels = unet_config.get("adm_in_channels", None)
if self.adm_channels is None:
self.adm_channels = 0
self.inpaint_model = False
self.concat_keys = ()
logging.info("model_type {}".format(model_type.name))
logging.debug("adm {}".format(self.adm_channels))
@ -107,8 +108,7 @@ class BaseModel(torch.nn.Module):
def extra_conds(self, **kwargs):
out = {}
if self.inpaint_model:
concat_keys = ("mask", "masked_image")
if len(self.concat_keys) > 0:
cond_concat = []
denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
concat_latent_image = kwargs.get("concat_latent_image", None)
@ -125,24 +125,16 @@ class BaseModel(torch.nn.Module):
concat_latent_image = utils.resize_to_batch_size(concat_latent_image, noise.shape[0])
if len(denoise_mask.shape) == len(noise.shape):
denoise_mask = denoise_mask[:,:1]
if denoise_mask is not None:
if len(denoise_mask.shape) == len(noise.shape):
denoise_mask = denoise_mask[:,:1]
denoise_mask = denoise_mask.reshape((-1, 1, denoise_mask.shape[-2], denoise_mask.shape[-1]))
if denoise_mask.shape[-2:] != noise.shape[-2:]:
denoise_mask = utils.common_upscale(denoise_mask, noise.shape[-1], noise.shape[-2], "bilinear", "center")
denoise_mask = utils.resize_to_batch_size(denoise_mask.round(), noise.shape[0])
denoise_mask = denoise_mask.reshape((-1, 1, denoise_mask.shape[-2], denoise_mask.shape[-1]))
if denoise_mask.shape[-2:] != noise.shape[-2:]:
denoise_mask = utils.common_upscale(denoise_mask, noise.shape[-1], noise.shape[-2], "bilinear", "center")
denoise_mask = utils.resize_to_batch_size(denoise_mask.round(), noise.shape[0])
def blank_inpaint_image_like(latent_image):
blank_image = torch.ones_like(latent_image)
# these are the values for "zero" in pixel space translated to latent space
blank_image[:,0] *= 0.8223
blank_image[:,1] *= -0.6876
blank_image[:,2] *= 0.6364
blank_image[:,3] *= 0.1380
return blank_image
for ck in concat_keys:
for ck in self.concat_keys:
if denoise_mask is not None:
if ck == "mask":
cond_concat.append(denoise_mask.to(device))
@ -152,7 +144,7 @@ class BaseModel(torch.nn.Module):
if ck == "mask":
cond_concat.append(torch.ones_like(noise)[:,:1])
elif ck == "masked_image":
cond_concat.append(blank_inpaint_image_like(noise))
cond_concat.append(self.blank_inpaint_image_like(noise))
data = torch.cat(cond_concat, dim=1)
out['c_concat'] = comfy.conds.CONDNoiseShape(data)
@ -221,7 +213,16 @@ class BaseModel(torch.nn.Module):
return unet_state_dict
def set_inpaint(self):
self.inpaint_model = True
self.concat_keys = ("mask", "masked_image")
def blank_inpaint_image_like(latent_image):
blank_image = torch.ones_like(latent_image)
# these are the values for "zero" in pixel space translated to latent space
blank_image[:,0] *= 0.8223
blank_image[:,1] *= -0.6876
blank_image[:,2] *= 0.6364
blank_image[:,3] *= 0.1380
return blank_image
self.blank_inpaint_image_like = blank_inpaint_image_like
def memory_required(self, input_shape):
if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():