Support scaled fp8 t5xxl model.

This commit is contained in:
comfyanonymous 2024-10-20 22:27:00 -04:00
parent f9f9faface
commit 83ca891118
6 changed files with 63 additions and 30 deletions

View File

@ -290,12 +290,21 @@ class fp8_ops(manual_cast):
weight, bias = cast_bias_weight(self, input) weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.linear(input, weight, bias) return torch.nn.functional.linear(input, weight, bias)
def scaled_fp8_ops(fp8_matrix_mult=False): def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None):
class scaled_fp8_op(manual_cast): class scaled_fp8_op(manual_cast):
class Linear(manual_cast.Linear): class Linear(manual_cast.Linear):
def __init__(self, *args, **kwargs):
if override_dtype is not None:
kwargs['dtype'] = override_dtype
super().__init__(*args, **kwargs)
def reset_parameters(self): def reset_parameters(self):
if not hasattr(self, 'scale_weight'): if not hasattr(self, 'scale_weight'):
self.scale_weight = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False) self.scale_weight = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
if not scale_input:
self.scale_input = None
if not hasattr(self, 'scale_input'): if not hasattr(self, 'scale_input'):
self.scale_input = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False) self.scale_input = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
return None return None
@ -328,7 +337,7 @@ def scaled_fp8_ops(fp8_matrix_mult=False):
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=False): def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=False):
fp8_compute = comfy.model_management.supports_fp8_compute(load_device) fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
if scaled_fp8: if scaled_fp8:
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute) return scaled_fp8_ops(fp8_matrix_mult=fp8_compute, scale_input=True)
if fp8_compute and (fp8_optimizations or args.fast) and not disable_fast_fp8: if fp8_compute and (fp8_optimizations or args.fast) and not disable_fast_fp8:
return fp8_ops return fp8_ops

View File

@ -432,16 +432,15 @@ def detect_te_model(sd):
return None return None
def t5xxl_weight_dtype(clip_data): def t5xxl_detect(clip_data):
weight_name = "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" weight_name = "encoder.block.23.layer.1.DenseReluDense.wi_1.weight"
dtype_t5 = None dtype_t5 = None
for sd in clip_data: for sd in clip_data:
weight = sd.get(weight_name, None) if weight_name in sd:
if weight is not None: return comfy.text_encoders.sd3_clip.t5_xxl_detect(sd)
dtype_t5 = weight.dtype
break return {}
return dtype_t5
def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}): def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
@ -475,7 +474,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.clip = comfy.text_encoders.sd2_clip.SD2ClipModel clip_target.clip = comfy.text_encoders.sd2_clip.SD2ClipModel
clip_target.tokenizer = comfy.text_encoders.sd2_clip.SD2Tokenizer clip_target.tokenizer = comfy.text_encoders.sd2_clip.SD2Tokenizer
elif te_model == TEModel.T5_XXL: elif te_model == TEModel.T5_XXL:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, dtype_t5=t5xxl_weight_dtype(clip_data)) clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, **t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif te_model == TEModel.T5_XL: elif te_model == TEModel.T5_XL:
clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model
@ -493,19 +492,19 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
elif len(clip_data) == 2: elif len(clip_data) == 2:
if clip_type == CLIPType.SD3: if clip_type == CLIPType.SD3:
te_models = [detect_te_model(clip_data[0]), detect_te_model(clip_data[1])] te_models = [detect_te_model(clip_data[0]), detect_te_model(clip_data[1])]
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=TEModel.CLIP_L in te_models, clip_g=TEModel.CLIP_G in te_models, t5=TEModel.T5_XXL in te_models, dtype_t5=t5xxl_weight_dtype(clip_data)) clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=TEModel.CLIP_L in te_models, clip_g=TEModel.CLIP_G in te_models, t5=TEModel.T5_XXL in te_models, **t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif clip_type == CLIPType.HUNYUAN_DIT: elif clip_type == CLIPType.HUNYUAN_DIT:
clip_target.clip = comfy.text_encoders.hydit.HyditModel clip_target.clip = comfy.text_encoders.hydit.HyditModel
clip_target.tokenizer = comfy.text_encoders.hydit.HyditTokenizer clip_target.tokenizer = comfy.text_encoders.hydit.HyditTokenizer
elif clip_type == CLIPType.FLUX: elif clip_type == CLIPType.FLUX:
clip_target.clip = comfy.text_encoders.flux.flux_clip(dtype_t5=t5xxl_weight_dtype(clip_data)) clip_target.clip = comfy.text_encoders.flux.flux_clip(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.flux.FluxTokenizer clip_target.tokenizer = comfy.text_encoders.flux.FluxTokenizer
else: else:
clip_target.clip = sdxl_clip.SDXLClipModel clip_target.clip = sdxl_clip.SDXLClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer clip_target.tokenizer = sdxl_clip.SDXLTokenizer
elif len(clip_data) == 3: elif len(clip_data) == 3:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(dtype_t5=t5xxl_weight_dtype(clip_data)) clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
parameters = 0 parameters = 0

View File

@ -94,11 +94,20 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
config = json.load(f) config = json.load(f)
operations = model_options.get("custom_operations", None) operations = model_options.get("custom_operations", None)
scaled_fp8 = None
if operations is None: if operations is None:
scaled_fp8 = model_options.get("scaled_fp8", None)
if scaled_fp8 is not None:
operations = comfy.ops.scaled_fp8_ops(fp8_matrix_mult=False, override_dtype=scaled_fp8)
else:
operations = comfy.ops.manual_cast operations = comfy.ops.manual_cast
self.operations = operations self.operations = operations
self.transformer = model_class(config, dtype, device, self.operations) self.transformer = model_class(config, dtype, device, self.operations)
if scaled_fp8 is not None:
self.transformer.scaled_fp8 = torch.nn.Parameter(torch.tensor([], dtype=scaled_fp8))
self.num_layers = self.transformer.num_layers self.num_layers = self.transformer.num_layers
self.max_length = max_length self.max_length = max_length

View File

@ -529,12 +529,11 @@ class SD3(supported_models_base.BASE):
clip_l = True clip_l = True
if "{}clip_g.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict: if "{}clip_g.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict:
clip_g = True clip_g = True
t5_key = "{}t5xxl.transformer.encoder.final_layer_norm.weight".format(pref) t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
if t5_key in state_dict: if "dtype_t5" in t5_detect:
t5 = True t5 = True
dtype_t5 = state_dict[t5_key].dtype
return supported_models_base.ClipTarget(comfy.text_encoders.sd3_clip.SD3Tokenizer, comfy.text_encoders.sd3_clip.sd3_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5)) return supported_models_base.ClipTarget(comfy.text_encoders.sd3_clip.SD3Tokenizer, comfy.text_encoders.sd3_clip.sd3_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, **t5_detect))
class StableAudio(supported_models_base.BASE): class StableAudio(supported_models_base.BASE):
unet_config = { unet_config = {
@ -653,11 +652,8 @@ class Flux(supported_models_base.BASE):
def clip_target(self, state_dict={}): def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0] pref = self.text_encoder_key_prefix[0]
t5_key = "{}t5xxl.transformer.encoder.final_layer_norm.weight".format(pref) t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
dtype_t5 = None return supported_models_base.ClipTarget(comfy.text_encoders.flux.FluxTokenizer, comfy.text_encoders.flux.flux_clip(**t5_detect))
if t5_key in state_dict:
dtype_t5 = state_dict[t5_key].dtype
return supported_models_base.ClipTarget(comfy.text_encoders.flux.FluxTokenizer, comfy.text_encoders.flux.flux_clip(dtype_t5=dtype_t5))
class FluxSchnell(Flux): class FluxSchnell(Flux):
unet_config = { unet_config = {

View File

@ -1,15 +1,11 @@
from comfy import sd1_clip from comfy import sd1_clip
import comfy.text_encoders.t5 import comfy.text_encoders.t5
import comfy.text_encoders.sd3_clip
import comfy.model_management import comfy.model_management
from transformers import T5TokenizerFast from transformers import T5TokenizerFast
import torch import torch
import os import os
class T5XXLModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json")
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, model_options=model_options)
class T5XXLTokenizer(sd1_clip.SDTokenizer): class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
@ -41,7 +37,7 @@ class FluxClipModel(torch.nn.Module):
dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device) dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel) clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options) self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options) self.t5xxl = comfy.text_encoders.sd3_clip.T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options)
self.dtypes = set([dtype, dtype_t5]) self.dtypes = set([dtype, dtype_t5])
def set_clip_options(self, options): def set_clip_options(self, options):
@ -66,8 +62,11 @@ class FluxClipModel(torch.nn.Module):
else: else:
return self.t5xxl.load_sd(sd) return self.t5xxl.load_sd(sd)
def flux_clip(dtype_t5=None): def flux_clip(dtype_t5=None, t5xxl_scaled_fp8=None):
class FluxClipModel_(FluxClipModel): class FluxClipModel_(FluxClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}): def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
super().__init__(dtype_t5=dtype_t5, device=device, dtype=dtype, model_options=model_options) super().__init__(dtype_t5=dtype_t5, device=device, dtype=dtype, model_options=model_options)
return FluxClipModel_ return FluxClipModel_

View File

@ -10,8 +10,26 @@ import logging
class T5XXLModel(sd1_clip.SDClipModel): class T5XXLModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=False, model_options={}): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=False, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json") textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json")
t5xxl_scaled_fp8 = model_options.get("t5xxl_scaled_fp8", None)
if t5xxl_scaled_fp8 is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = t5xxl_scaled_fp8
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
def t5_xxl_detect(state_dict, prefix=""):
out = {}
t5_key = "{}encoder.final_layer_norm.weight".format(prefix)
if t5_key in state_dict:
out["dtype_t5"] = state_dict[t5_key].dtype
scaled_fp8_key = "{}scaled_fp8".format(prefix)
if scaled_fp8_key in state_dict:
out["t5xxl_scaled_fp8"] = state_dict[scaled_fp8_key].dtype
return out
class T5XXLTokenizer(sd1_clip.SDTokenizer): class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
@ -139,8 +157,11 @@ class SD3ClipModel(torch.nn.Module):
else: else:
return self.t5xxl.load_sd(sd) return self.t5xxl.load_sd(sd)
def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5_attention_mask=False): def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5xxl_scaled_fp8=None, t5_attention_mask=False):
class SD3ClipModel_(SD3ClipModel): class SD3ClipModel_(SD3ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}): def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, t5_attention_mask=t5_attention_mask, device=device, dtype=dtype, model_options=model_options) super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, t5_attention_mask=t5_attention_mask, device=device, dtype=dtype, model_options=model_options)
return SD3ClipModel_ return SD3ClipModel_