mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
ControlNetApplyAdvanced can now define when controlnet gets applied.
This commit is contained in:
parent
d191c4f9ed
commit
7ff14b62f8
@ -455,6 +455,16 @@ def calculate_start_end_timesteps(model, conds):
|
||||
n['timestep_end'] = timestep_end
|
||||
conds[t] = [x[0], n]
|
||||
|
||||
def pre_run_control(model, conds):
|
||||
for t in range(len(conds)):
|
||||
x = conds[t]
|
||||
|
||||
timestep_start = None
|
||||
timestep_end = None
|
||||
percent_to_timestep_function = lambda a: model.sigma_to_t(model.t_to_sigma(torch.tensor(a) * 999.0))
|
||||
if 'control' in x[1]:
|
||||
x[1]['control'].pre_run(model.inner_model, percent_to_timestep_function)
|
||||
|
||||
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
|
||||
cond_cnets = []
|
||||
cond_other = []
|
||||
@ -607,6 +617,8 @@ class KSampler:
|
||||
for c in negative:
|
||||
create_cond_with_same_area_if_none(positive, c)
|
||||
|
||||
pre_run_control(self.model_wrap, negative + positive)
|
||||
|
||||
apply_empty_x_to_equal_area(list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
|
||||
apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
|
||||
|
||||
|
122
comfy/sd.py
122
comfy/sd.py
@ -673,16 +673,58 @@ def broadcast_image_to(tensor, target_batch_size, batched_number):
|
||||
else:
|
||||
return torch.cat([tensor] * batched_number, dim=0)
|
||||
|
||||
class ControlNet:
|
||||
def __init__(self, control_model, global_average_pooling=False, device=None):
|
||||
self.control_model = control_model
|
||||
class ControlBase:
|
||||
def __init__(self, device=None):
|
||||
self.cond_hint_original = None
|
||||
self.cond_hint = None
|
||||
self.strength = 1.0
|
||||
self.timestep_percent_range = (1.0, 0.0)
|
||||
self.timestep_range = None
|
||||
|
||||
if device is None:
|
||||
device = model_management.get_torch_device()
|
||||
self.device = device
|
||||
self.previous_controlnet = None
|
||||
|
||||
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(1.0, 0.0)):
|
||||
self.cond_hint_original = cond_hint
|
||||
self.strength = strength
|
||||
self.timestep_percent_range = timestep_percent_range
|
||||
return self
|
||||
|
||||
def pre_run(self, model, percent_to_timestep_function):
|
||||
self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
|
||||
if self.previous_controlnet is not None:
|
||||
self.previous_controlnet.pre_run(model, percent_to_timestep_function)
|
||||
|
||||
def set_previous_controlnet(self, controlnet):
|
||||
self.previous_controlnet = controlnet
|
||||
return self
|
||||
|
||||
def cleanup(self):
|
||||
if self.previous_controlnet is not None:
|
||||
self.previous_controlnet.cleanup()
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.cond_hint = None
|
||||
self.timestep_range = None
|
||||
|
||||
def get_models(self):
|
||||
out = []
|
||||
if self.previous_controlnet is not None:
|
||||
out += self.previous_controlnet.get_models()
|
||||
out.append(self.control_model)
|
||||
return out
|
||||
|
||||
def copy_to(self, c):
|
||||
c.cond_hint_original = self.cond_hint_original
|
||||
c.strength = self.strength
|
||||
c.timestep_percent_range = self.timestep_percent_range
|
||||
|
||||
class ControlNet(ControlBase):
|
||||
def __init__(self, control_model, global_average_pooling=False, device=None):
|
||||
super().__init__(device)
|
||||
self.control_model = control_model
|
||||
self.global_average_pooling = global_average_pooling
|
||||
|
||||
def get_control(self, x_noisy, t, cond, batched_number):
|
||||
@ -690,6 +732,13 @@ class ControlNet:
|
||||
if self.previous_controlnet is not None:
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
||||
|
||||
if self.timestep_range is not None:
|
||||
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
||||
if control_prev is not None:
|
||||
return control_prev
|
||||
else:
|
||||
return {}
|
||||
|
||||
output_dtype = x_noisy.dtype
|
||||
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
||||
if self.cond_hint is not None:
|
||||
@ -737,35 +786,11 @@ class ControlNet:
|
||||
out['input'] = control_prev['input']
|
||||
return out
|
||||
|
||||
def set_cond_hint(self, cond_hint, strength=1.0):
|
||||
self.cond_hint_original = cond_hint
|
||||
self.strength = strength
|
||||
return self
|
||||
|
||||
def set_previous_controlnet(self, controlnet):
|
||||
self.previous_controlnet = controlnet
|
||||
return self
|
||||
|
||||
def cleanup(self):
|
||||
if self.previous_controlnet is not None:
|
||||
self.previous_controlnet.cleanup()
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.cond_hint = None
|
||||
|
||||
def copy(self):
|
||||
c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
|
||||
c.cond_hint_original = self.cond_hint_original
|
||||
c.strength = self.strength
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
def get_models(self):
|
||||
out = []
|
||||
if self.previous_controlnet is not None:
|
||||
out += self.previous_controlnet.get_models()
|
||||
out.append(self.control_model)
|
||||
return out
|
||||
|
||||
def load_controlnet(ckpt_path, model=None):
|
||||
controlnet_data = utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
|
||||
@ -870,24 +895,25 @@ def load_controlnet(ckpt_path, model=None):
|
||||
control = ControlNet(control_model, global_average_pooling=global_average_pooling)
|
||||
return control
|
||||
|
||||
class T2IAdapter:
|
||||
class T2IAdapter(ControlBase):
|
||||
def __init__(self, t2i_model, channels_in, device=None):
|
||||
super().__init__(device)
|
||||
self.t2i_model = t2i_model
|
||||
self.channels_in = channels_in
|
||||
self.strength = 1.0
|
||||
if device is None:
|
||||
device = model_management.get_torch_device()
|
||||
self.device = device
|
||||
self.previous_controlnet = None
|
||||
self.control_input = None
|
||||
self.cond_hint_original = None
|
||||
self.cond_hint = None
|
||||
|
||||
def get_control(self, x_noisy, t, cond, batched_number):
|
||||
control_prev = None
|
||||
if self.previous_controlnet is not None:
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
||||
|
||||
if self.timestep_range is not None:
|
||||
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
||||
if control_prev is not None:
|
||||
return control_prev
|
||||
else:
|
||||
return {}
|
||||
|
||||
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
@ -932,33 +958,11 @@ class T2IAdapter:
|
||||
out['output'] = control_prev['output']
|
||||
return out
|
||||
|
||||
def set_cond_hint(self, cond_hint, strength=1.0):
|
||||
self.cond_hint_original = cond_hint
|
||||
self.strength = strength
|
||||
return self
|
||||
|
||||
def set_previous_controlnet(self, controlnet):
|
||||
self.previous_controlnet = controlnet
|
||||
return self
|
||||
|
||||
def copy(self):
|
||||
c = T2IAdapter(self.t2i_model, self.channels_in)
|
||||
c.cond_hint_original = self.cond_hint_original
|
||||
c.strength = self.strength
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
def cleanup(self):
|
||||
if self.previous_controlnet is not None:
|
||||
self.previous_controlnet.cleanup()
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.cond_hint = None
|
||||
|
||||
def get_models(self):
|
||||
out = []
|
||||
if self.previous_controlnet is not None:
|
||||
out += self.previous_controlnet.get_models()
|
||||
return out
|
||||
|
||||
def load_t2i_adapter(t2i_data):
|
||||
keys = t2i_data.keys()
|
||||
|
6
nodes.py
6
nodes.py
@ -615,6 +615,8 @@ class ControlNetApplyAdvanced:
|
||||
"control_net": ("CONTROL_NET", ),
|
||||
"image": ("IMAGE", ),
|
||||
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||
"start": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
|
||||
"end": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001})
|
||||
}}
|
||||
|
||||
RETURN_TYPES = ("CONDITIONING","CONDITIONING")
|
||||
@ -623,7 +625,7 @@ class ControlNetApplyAdvanced:
|
||||
|
||||
CATEGORY = "conditioning"
|
||||
|
||||
def apply_controlnet(self, positive, negative, control_net, image, strength):
|
||||
def apply_controlnet(self, positive, negative, control_net, image, strength, start, end):
|
||||
if strength == 0:
|
||||
return (positive, negative)
|
||||
|
||||
@ -640,7 +642,7 @@ class ControlNetApplyAdvanced:
|
||||
if prev_cnet in cnets:
|
||||
c_net = cnets[prev_cnet]
|
||||
else:
|
||||
c_net = control_net.copy().set_cond_hint(control_hint, strength)
|
||||
c_net = control_net.copy().set_cond_hint(control_hint, strength, (start, end))
|
||||
c_net.set_previous_controlnet(prev_cnet)
|
||||
cnets[prev_cnet] = c_net
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user