Satisfy ruff linting

This commit is contained in:
Jedrzej Kosinski 2025-03-03 23:08:29 -06:00
parent 5080105c23
commit 6dca17bd2d
5 changed files with 10 additions and 12 deletions

View File

@ -72,7 +72,7 @@ class ControlIsolation:
def __enter__(self):
self.control.previous_controlnet = None
def __exit__(self, *args):
self.control.previous_controlnet = self.orig_previous_controlnet
@ -151,7 +151,7 @@ class ControlBase:
def deepclone_multigpu(self, load_device, autoregister=False):
'''
Create deep clone of Control object where model(s) is set to other devices.
When autoregister is set to True, the deep clone is also added to multigpu_clones dict.
'''
raise NotImplementedError("Classes inheriting from ControlBase should define their own deepclone_multigpu funtion.")
@ -846,7 +846,7 @@ class T2IAdapter(ControlBase):
c = T2IAdapter(self.t2i_model, self.channels_in, self.compression_ratio, self.upscale_algorithm)
self.copy_to(c)
return c
def deepclone_multigpu(self, load_device, autoregister=False):
c = self.copy()
c.t2i_model = copy.deepcopy(c.t2i_model)

View File

@ -30,7 +30,6 @@ import gc
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher
from comfy.model_base import BaseModel
class VRAMState(Enum):
DISABLED = 0 #No vram present: no need to move models to vram

View File

@ -18,7 +18,7 @@ class GPUOptions:
def clone(self):
return GPUOptions(self.device_index, self.relative_speed)
def create_dict(self):
return {
"relative_speed": self.relative_speed
@ -86,7 +86,7 @@ def create_multigpu_deepclones(model: ModelPatcher, max_gpus: int, gpu_options:
device_patcher = lm.clone()
logging.info(f"Reusing loaded deepclone of {device_patcher.model.__class__.__name__} for {device}")
break
if device_patcher is None:
if device_patcher is None:
device_patcher = model.deepclone_multigpu(new_load_device=device)
device_patcher.is_multigpu_base_clone = True
multigpu_models = model.get_additional_models_with_key("multigpu")
@ -138,7 +138,7 @@ def load_balance_devices(model_options: dict[str], total_work: int, return_idle_
# if need to compare work idle time, need to normalize to a common total work
if work_normalized:
idle_time *= (work_normalized/total_work)
return LoadBalance(dict_work_per_device, idle_time)
def round_preserved(values: list[float]):

View File

@ -384,7 +384,7 @@ def _calc_cond_batch_multigpu(model: BaseModel, conds: list[list[dict]], x_in: t
devices = [dev_m for dev_m in model_options['multigpu_clones'].keys()]
device_batched_hooked_to_run: dict[torch.device, list[tuple[comfy.hooks.HookGroup, tuple]]] = {}
total_conds = 0
for to_run in hooked_to_run.values():
total_conds += len(to_run)
@ -504,7 +504,7 @@ def _calc_cond_batch_multigpu(model: BaseModel, conds: list[list[dict]], x_in: t
new_thread = threading.Thread(target=_handle_batch, args=(device, batch_tuple, results))
threads.append(new_thread)
new_thread.start()
for thread in threads:
thread.join()

View File

@ -1,5 +1,4 @@
from __future__ import annotations
import logging
from inspect import cleandoc
from typing import TYPE_CHECKING
@ -11,7 +10,7 @@ import comfy.multigpu
class MultiGPUWorkUnitsNode:
"""
Prepares model to have sampling accelerated via splitting work units.
Should be placed after nodes that modify the model object itself, such as compile or attention-switch nodes.
Other than those exceptions, this node can be placed in any order.
@ -30,7 +29,7 @@ class MultiGPUWorkUnitsNode:
"gpu_options": ("GPU_OPTIONS",)
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "init_multigpu"
CATEGORY = "advanced/multigpu"