Implement my alternative take on CFG++ as the euler_pp sampler.

Add euler_ancestral_pp which is the ancestral version of euler with the
same modification.
This commit is contained in:
comfyanonymous 2024-06-25 07:41:52 -04:00
parent 90aebb6c86
commit 69d710e40f
3 changed files with 56 additions and 26 deletions

View File

@ -7,7 +7,7 @@ import torchsde
from tqdm.auto import trange, tqdm from tqdm.auto import trange, tqdm
from . import utils from . import utils
import comfy.model_patcher
def append_zero(x): def append_zero(x):
return torch.cat([x, x.new_zeros([1])]) return torch.cat([x, x.new_zeros([1])])
@ -945,3 +945,56 @@ def sample_ipndm_v(model, x, sigmas, extra_args=None, callback=None, disable=Non
buffer_model.append(d_cur.detach()) buffer_model.append(d_cur.detach())
return x_next return x_next
@torch.no_grad()
def sample_euler_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
extra_args = {} if extra_args is None else extra_args
temp = [0]
def post_cfg_function(args):
temp[0] = args["uncond_denoised"]
return args["denoised"]
model_options = extra_args.get("model_options", {}).copy()
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
sigma_hat = sigmas[i]
denoised = model(x, sigma_hat * s_in, **extra_args)
d = to_d(x - denoised + temp[0], sigma_hat, denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
dt = sigmas[i + 1] - sigma_hat
# Euler method
x = x + d * dt
return x
@torch.no_grad()
def sample_euler_ancestral_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
"""Ancestral sampling with Euler method steps."""
extra_args = {} if extra_args is None else extra_args
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
temp = [0]
def post_cfg_function(args):
temp[0] = args["uncond_denoised"]
return args["denoised"]
model_options = extra_args.get("model_options", {}).copy()
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
d = to_d(x - denoised + temp[0], sigmas[i], denoised)
# Euler method
dt = sigma_down - sigmas[i]
x = x + d * dt
if sigmas[i + 1] > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
return x

View File

@ -537,7 +537,7 @@ class Sampler:
sigma = float(sigmas[0]) sigma = float(sigmas[0])
return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral", KSAMPLER_NAMES = ["euler", "euler_pp", "euler_ancestral", "euler_ancestral_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu", "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm", "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
"ipndm", "ipndm_v"] "ipndm", "ipndm_v"]

View File

@ -82,29 +82,6 @@ def sample_euler_cfgpp(model, x, sigmas, extra_args=None, callback=None, disable
x = denoised + sigmas[i + 1] * d x = denoised + sigmas[i + 1] * d
return x return x
@torch.no_grad()
def sample_euler_cfgpp_alt(model, x, sigmas, extra_args=None, callback=None, disable=None):
extra_args = {} if extra_args is None else extra_args
temp = [0]
def post_cfg_function(args):
temp[0] = args["uncond_denoised"]
return args["denoised"]
model_options = extra_args.get("model_options", {}).copy()
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
sigma_hat = sigmas[i]
denoised = model(x, sigma_hat * s_in, **extra_args)
d = to_d(x - denoised + temp[0], sigma_hat, denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
dt = sigmas[i + 1] - sigma_hat
# Euler method
x = x + d * dt
return x
class SamplerEulerCFGpp: class SamplerEulerCFGpp:
@classmethod @classmethod
@ -122,7 +99,7 @@ class SamplerEulerCFGpp:
if version == "regular": if version == "regular":
sampler = comfy.samplers.KSAMPLER(sample_euler_cfgpp) sampler = comfy.samplers.KSAMPLER(sample_euler_cfgpp)
else: else:
sampler = comfy.samplers.KSAMPLER(sample_euler_cfgpp_alt) sampler = comfy.samplers.ksampler("euler_pp")
return (sampler, ) return (sampler, )
NODE_CLASS_MAPPINGS = { NODE_CLASS_MAPPINGS = {