Add support for VIDEO as a built-in type (#7844)

* Add basic support for videos as types

This PR adds support for VIDEO as first-class types. In order to avoid
unnecessary costs, VIDEO outputs must implement the `VideoInput` ABC,
but their implementation details can vary. Included are two
implementations of this type which can be returned by other nodes:

* `VideoFromFile` - Created with either a path on disk (as a string) or
  a `io.BytesIO` containing the contents of a file in a supported format
  (like .mp4). This implementation won't actually load the video unless
  necessary. It will also avoid re-encoding when saving if possible.
* `VideoFromComponents` - Created from an image tensor and an optional
  audio tensor.

Currently, only h264 encoded videos in .mp4 containers are supported for
saving, but the plan is to add additional encodings/containers in the
near future (particularly .webm).

* Add optimization to avoid parsing entire video

* Improve type declarations to reduce warnings

* Make sure bytesIO objects can be read many times

* Fix a potential issue when saving long videos

* Fix incorrect type annotation

* Add a `LoadVideo` node to make testing easier

* Refactor new types out of the base comfy folder

I've created a new `comfy_api` top-level module. The intention is that
anything within this folder would be covered by semver-style versioning
that would allow custom nodes to rely on them not introducing breaking
changes.

* Fix linting issue
This commit is contained in:
guill 2025-04-29 02:58:00 -07:00 committed by GitHub
parent 83d04717b6
commit 68f0d35296
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 532 additions and 8 deletions

View File

@ -48,6 +48,7 @@ class IO(StrEnum):
FACE_ANALYSIS = "FACE_ANALYSIS"
BBOX = "BBOX"
SEGS = "SEGS"
VIDEO = "VIDEO"
ANY = "*"
"""Always matches any type, but at a price.
@ -273,7 +274,7 @@ class ComfyNodeABC(ABC):
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
"""
OUTPUT_IS_LIST: tuple[bool]
OUTPUT_IS_LIST: tuple[bool, ...]
"""A tuple indicating which node outputs are lists, but will be connected to nodes that expect individual items.
Connected nodes that do not implement `INPUT_IS_LIST` will be executed once for every item in the list.
@ -292,7 +293,7 @@ class ComfyNodeABC(ABC):
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
"""
RETURN_TYPES: tuple[IO]
RETURN_TYPES: tuple[IO, ...]
"""A tuple representing the outputs of this node.
Usage::
@ -301,12 +302,12 @@ class ComfyNodeABC(ABC):
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-types
"""
RETURN_NAMES: tuple[str]
RETURN_NAMES: tuple[str, ...]
"""The output slot names for each item in `RETURN_TYPES`, e.g. ``RETURN_NAMES = ("count", "filter_string")``
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-names
"""
OUTPUT_TOOLTIPS: tuple[str]
OUTPUT_TOOLTIPS: tuple[str, ...]
"""A tuple of strings to use as tooltips for node outputs, one for each item in `RETURN_TYPES`."""
FUNCTION: str
"""The name of the function to execute as a literal string, e.g. `FUNCTION = "execute"`

View File

@ -0,0 +1,8 @@
from .basic_types import ImageInput, AudioInput
from .video_types import VideoInput
__all__ = [
"ImageInput",
"AudioInput",
"VideoInput",
]

View File

@ -0,0 +1,20 @@
import torch
from typing import TypedDict
ImageInput = torch.Tensor
"""
An image in format [B, H, W, C] where B is the batch size, C is the number of channels,
"""
class AudioInput(TypedDict):
"""
TypedDict representing audio input.
"""
waveform: torch.Tensor
"""
Tensor in the format [B, C, T] where B is the batch size, C is the number of channels,
"""
sample_rate: int

View File

@ -0,0 +1,45 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import Optional
from comfy_api.util import VideoContainer, VideoCodec, VideoComponents
class VideoInput(ABC):
"""
Abstract base class for video input types.
"""
@abstractmethod
def get_components(self) -> VideoComponents:
"""
Abstract method to get the video components (images, audio, and frame rate).
Returns:
VideoComponents containing images, audio, and frame rate
"""
pass
@abstractmethod
def save_to(
self,
path: str,
format: VideoContainer = VideoContainer.AUTO,
codec: VideoCodec = VideoCodec.AUTO,
metadata: Optional[dict] = None
):
"""
Abstract method to save the video input to a file.
"""
pass
# Provide a default implementation, but subclasses can provide optimized versions
# if possible.
def get_dimensions(self) -> tuple[int, int]:
"""
Returns the dimensions of the video input.
Returns:
Tuple of (width, height)
"""
components = self.get_components()
return components.images.shape[2], components.images.shape[1]

View File

@ -0,0 +1,7 @@
from .video_types import VideoFromFile, VideoFromComponents
__all__ = [
# Implementations
"VideoFromFile",
"VideoFromComponents",
]

View File

@ -0,0 +1,224 @@
from __future__ import annotations
from av.container import InputContainer
from av.subtitles.stream import SubtitleStream
from fractions import Fraction
from typing import Optional
from comfy_api.input import AudioInput
import av
import io
import json
import numpy as np
import torch
from comfy_api.input import VideoInput
from comfy_api.util import VideoContainer, VideoCodec, VideoComponents
class VideoFromFile(VideoInput):
"""
Class representing video input from a file.
"""
def __init__(self, file: str | io.BytesIO):
"""
Initialize the VideoFromFile object based off of either a path on disk or a BytesIO object
containing the file contents.
"""
self.__file = file
def get_dimensions(self) -> tuple[int, int]:
"""
Returns the dimensions of the video input.
Returns:
Tuple of (width, height)
"""
if isinstance(self.__file, io.BytesIO):
self.__file.seek(0) # Reset the BytesIO object to the beginning
with av.open(self.__file, mode='r') as container:
for stream in container.streams:
if stream.type == 'video':
assert isinstance(stream, av.VideoStream)
return stream.width, stream.height
raise ValueError(f"No video stream found in file '{self.__file}'")
def get_components_internal(self, container: InputContainer) -> VideoComponents:
# Get video frames
frames = []
for frame in container.decode(video=0):
img = frame.to_ndarray(format='rgb24') # shape: (H, W, 3)
img = torch.from_numpy(img) / 255.0 # shape: (H, W, 3)
frames.append(img)
images = torch.stack(frames) if len(frames) > 0 else torch.zeros(0, 3, 0, 0)
# Get frame rate
video_stream = next(s for s in container.streams if s.type == 'video')
frame_rate = Fraction(video_stream.average_rate) if video_stream and video_stream.average_rate else Fraction(1)
# Get audio if available
audio = None
try:
container.seek(0) # Reset the container to the beginning
for stream in container.streams:
if stream.type != 'audio':
continue
assert isinstance(stream, av.AudioStream)
audio_frames = []
for packet in container.demux(stream):
for frame in packet.decode():
assert isinstance(frame, av.AudioFrame)
audio_frames.append(frame.to_ndarray()) # shape: (channels, samples)
if len(audio_frames) > 0:
audio_data = np.concatenate(audio_frames, axis=1) # shape: (channels, total_samples)
audio_tensor = torch.from_numpy(audio_data).unsqueeze(0) # shape: (1, channels, total_samples)
audio = AudioInput({
"waveform": audio_tensor,
"sample_rate": int(stream.sample_rate) if stream.sample_rate else 1,
})
except StopIteration:
pass # No audio stream
metadata = container.metadata
return VideoComponents(images=images, audio=audio, frame_rate=frame_rate, metadata=metadata)
def get_components(self) -> VideoComponents:
if isinstance(self.__file, io.BytesIO):
self.__file.seek(0) # Reset the BytesIO object to the beginning
with av.open(self.__file, mode='r') as container:
return self.get_components_internal(container)
raise ValueError(f"No video stream found in file '{self.__file}'")
def save_to(
self,
path: str,
format: VideoContainer = VideoContainer.AUTO,
codec: VideoCodec = VideoCodec.AUTO,
metadata: Optional[dict] = None
):
if isinstance(self.__file, io.BytesIO):
self.__file.seek(0) # Reset the BytesIO object to the beginning
with av.open(self.__file, mode='r') as container:
container_format = container.format.name
video_encoding = container.streams.video[0].codec.name if len(container.streams.video) > 0 else None
reuse_streams = True
if format != VideoContainer.AUTO and format not in container_format.split(","):
reuse_streams = False
if codec != VideoCodec.AUTO and codec != video_encoding and video_encoding is not None:
reuse_streams = False
if not reuse_streams:
components = self.get_components_internal(container)
video = VideoFromComponents(components)
return video.save_to(
path,
format=format,
codec=codec,
metadata=metadata
)
streams = container.streams
with av.open(path, mode='w', options={"movflags": "use_metadata_tags"}) as output_container:
# Copy over the original metadata
for key, value in container.metadata.items():
if metadata is None or key not in metadata:
output_container.metadata[key] = value
# Add our new metadata
if metadata is not None:
for key, value in metadata.items():
if isinstance(value, str):
output_container.metadata[key] = value
else:
output_container.metadata[key] = json.dumps(value)
# Add streams to the new container
stream_map = {}
for stream in streams:
if isinstance(stream, (av.VideoStream, av.AudioStream, SubtitleStream)):
out_stream = output_container.add_stream_from_template(template=stream, opaque=True)
stream_map[stream] = out_stream
# Write packets to the new container
for packet in container.demux():
if packet.stream in stream_map and packet.dts is not None:
packet.stream = stream_map[packet.stream]
output_container.mux(packet)
class VideoFromComponents(VideoInput):
"""
Class representing video input from tensors.
"""
def __init__(self, components: VideoComponents):
self.__components = components
def get_components(self) -> VideoComponents:
return VideoComponents(
images=self.__components.images,
audio=self.__components.audio,
frame_rate=self.__components.frame_rate
)
def save_to(
self,
path: str,
format: VideoContainer = VideoContainer.AUTO,
codec: VideoCodec = VideoCodec.AUTO,
metadata: Optional[dict] = None
):
if format != VideoContainer.AUTO and format != VideoContainer.MP4:
raise ValueError("Only MP4 format is supported for now")
if codec != VideoCodec.AUTO and codec != VideoCodec.H264:
raise ValueError("Only H264 codec is supported for now")
with av.open(path, mode='w', options={'movflags': 'use_metadata_tags'}) as output:
# Add metadata before writing any streams
if metadata is not None:
for key, value in metadata.items():
output.metadata[key] = json.dumps(value)
frame_rate = Fraction(round(self.__components.frame_rate * 1000), 1000)
# Create a video stream
video_stream = output.add_stream('h264', rate=frame_rate)
video_stream.width = self.__components.images.shape[2]
video_stream.height = self.__components.images.shape[1]
video_stream.pix_fmt = 'yuv420p'
# Create an audio stream
audio_sample_rate = 1
audio_stream: Optional[av.AudioStream] = None
if self.__components.audio:
audio_sample_rate = int(self.__components.audio['sample_rate'])
audio_stream = output.add_stream('aac', rate=audio_sample_rate)
audio_stream.sample_rate = audio_sample_rate
audio_stream.format = 'fltp'
# Encode video
for i, frame in enumerate(self.__components.images):
img = (frame * 255).clamp(0, 255).byte().cpu().numpy() # shape: (H, W, 3)
frame = av.VideoFrame.from_ndarray(img, format='rgb24')
frame = frame.reformat(format='yuv420p') # Convert to YUV420P as required by h264
packet = video_stream.encode(frame)
output.mux(packet)
# Flush video
packet = video_stream.encode(None)
output.mux(packet)
if audio_stream and self.__components.audio:
# Encode audio
samples_per_frame = int(audio_sample_rate / frame_rate)
num_frames = self.__components.audio['waveform'].shape[2] // samples_per_frame
for i in range(num_frames):
start = i * samples_per_frame
end = start + samples_per_frame
# TODO(Feature) - Add support for stereo audio
chunk = self.__components.audio['waveform'][0, 0, start:end].unsqueeze(0).numpy()
audio_frame = av.AudioFrame.from_ndarray(chunk, format='fltp', layout='mono')
audio_frame.sample_rate = audio_sample_rate
audio_frame.pts = i * samples_per_frame
for packet in audio_stream.encode(audio_frame):
output.mux(packet)
# Flush audio
for packet in audio_stream.encode(None):
output.mux(packet)

View File

@ -0,0 +1,8 @@
from .video_types import VideoContainer, VideoCodec, VideoComponents
__all__ = [
# Utility Types
"VideoContainer",
"VideoCodec",
"VideoComponents",
]

View File

@ -0,0 +1,51 @@
from __future__ import annotations
from dataclasses import dataclass
from enum import Enum
from fractions import Fraction
from typing import Optional
from comfy_api.input import ImageInput, AudioInput
class VideoCodec(str, Enum):
AUTO = "auto"
H264 = "h264"
@classmethod
def as_input(cls) -> list[str]:
"""
Returns a list of codec names that can be used as node input.
"""
return [member.value for member in cls]
class VideoContainer(str, Enum):
AUTO = "auto"
MP4 = "mp4"
@classmethod
def as_input(cls) -> list[str]:
"""
Returns a list of container names that can be used as node input.
"""
return [member.value for member in cls]
@classmethod
def get_extension(cls, value) -> str:
"""
Returns the file extension for the container.
"""
if isinstance(value, str):
value = cls(value)
if value == VideoContainer.MP4 or value == VideoContainer.AUTO:
return "mp4"
return ""
@dataclass
class VideoComponents:
"""
Dataclass representing the components of a video.
"""
images: ImageInput
frame_rate: Fraction
audio: Optional[AudioInput] = None
metadata: Optional[dict] = None

View File

@ -5,9 +5,13 @@ import av
import torch
import folder_paths
import json
from typing import Optional, Literal
from fractions import Fraction
from comfy.comfy_types import FileLocator
from comfy.comfy_types import IO, FileLocator, ComfyNodeABC
from comfy_api.input import ImageInput, AudioInput, VideoInput
from comfy_api.util import VideoContainer, VideoCodec, VideoComponents
from comfy_api.input_impl import VideoFromFile, VideoFromComponents
from comfy.cli_args import args
class SaveWEBM:
def __init__(self):
@ -75,7 +79,163 @@ class SaveWEBM:
return {"ui": {"images": results, "animated": (True,)}} # TODO: frontend side
class SaveVideo(ComfyNodeABC):
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type: Literal["output"] = "output"
self.prefix_append = ""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"video": (IO.VIDEO, {"tooltip": "The video to save."}),
"filename_prefix": ("STRING", {"default": "video/ComfyUI", "tooltip": "The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."}),
"format": (VideoContainer.as_input(), {"default": "auto", "tooltip": "The format to save the video as."}),
"codec": (VideoCodec.as_input(), {"default": "auto", "tooltip": "The codec to use for the video."}),
},
"hidden": {
"prompt": "PROMPT",
"extra_pnginfo": "EXTRA_PNGINFO"
},
}
RETURN_TYPES = ()
FUNCTION = "save_video"
OUTPUT_NODE = True
CATEGORY = "image/video"
DESCRIPTION = "Saves the input images to your ComfyUI output directory."
def save_video(self, video: VideoInput, filename_prefix, format, codec, prompt=None, extra_pnginfo=None):
filename_prefix += self.prefix_append
width, height = video.get_dimensions()
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
filename_prefix,
self.output_dir,
width,
height
)
results: list[FileLocator] = list()
saved_metadata = None
if not args.disable_metadata:
metadata = {}
if extra_pnginfo is not None:
metadata.update(extra_pnginfo)
if prompt is not None:
metadata["prompt"] = prompt
if len(metadata) > 0:
saved_metadata = metadata
file = f"{filename}_{counter:05}_.{VideoContainer.get_extension(format)}"
video.save_to(
os.path.join(full_output_folder, file),
format=format,
codec=codec,
metadata=saved_metadata
)
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
})
counter += 1
return { "ui": { "images": results, "animated": (True,) } }
class CreateVideo(ComfyNodeABC):
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"images": (IO.IMAGE, {"tooltip": "The images to create a video from."}),
"fps": ("FLOAT", {"default": 30.0, "min": 1.0, "max": 120.0, "step": 1.0}),
},
"optional": {
"audio": (IO.AUDIO, {"tooltip": "The audio to add to the video."}),
}
}
RETURN_TYPES = (IO.VIDEO,)
FUNCTION = "create_video"
CATEGORY = "image/video"
DESCRIPTION = "Create a video from images."
def create_video(self, images: ImageInput, fps: float, audio: Optional[AudioInput] = None):
return (VideoFromComponents(
VideoComponents(
images=images,
audio=audio,
frame_rate=Fraction(fps),
)
),)
class GetVideoComponents(ComfyNodeABC):
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"video": (IO.VIDEO, {"tooltip": "The video to extract components from."}),
}
}
RETURN_TYPES = (IO.IMAGE, IO.AUDIO, IO.FLOAT)
RETURN_NAMES = ("images", "audio", "fps")
FUNCTION = "get_components"
CATEGORY = "image/video"
DESCRIPTION = "Extracts all components from a video: frames, audio, and framerate."
def get_components(self, video: VideoInput):
components = video.get_components()
return (components.images, components.audio, float(components.frame_rate))
class LoadVideo(ComfyNodeABC):
@classmethod
def INPUT_TYPES(cls):
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
files = folder_paths.filter_files_content_types(files, ["video"])
return {"required":
{"file": (sorted(files), {"video_upload": True})},
}
CATEGORY = "image/video"
RETURN_TYPES = (IO.VIDEO,)
FUNCTION = "load_video"
def load_video(self, file):
video_path = folder_paths.get_annotated_filepath(file)
return (VideoFromFile(video_path),)
@classmethod
def IS_CHANGED(cls, file):
video_path = folder_paths.get_annotated_filepath(file)
mod_time = os.path.getmtime(video_path)
# Instead of hashing the file, we can just use the modification time to avoid
# rehashing large files.
return mod_time
@classmethod
def VALIDATE_INPUTS(cls, file):
if not folder_paths.exists_annotated_filepath(file):
return "Invalid video file: {}".format(file)
return True
NODE_CLASS_MAPPINGS = {
"SaveWEBM": SaveWEBM,
"SaveVideo": SaveVideo,
"CreateVideo": CreateVideo,
"GetVideoComponents": GetVideoComponents,
"LoadVideo": LoadVideo,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"SaveVideo": "Save Video",
"CreateVideo": "Create Video",
"GetVideoComponents": "Get Video Components",
"LoadVideo": "Load Video",
}

View File

@ -4,7 +4,7 @@ import os
import time
import mimetypes
import logging
from typing import Literal
from typing import Literal, List
from collections.abc import Collection
from comfy.cli_args import args
@ -141,7 +141,7 @@ def get_directory_by_type(type_name: str) -> str | None:
return get_input_directory()
return None
def filter_files_content_types(files: list[str], content_types: Literal["image", "video", "audio", "model"]) -> list[str]:
def filter_files_content_types(files: list[str], content_types: List[Literal["image", "video", "audio", "model"]]) -> list[str]:
"""
Example:
files = os.listdir(folder_paths.get_input_directory())