Fix lowvram mode not working with unCLIP and Revision code.

This commit is contained in:
comfyanonymous 2023-12-26 05:02:02 -05:00
parent 392878a262
commit 61b3f15f8f
2 changed files with 4 additions and 4 deletions

View File

@ -43,8 +43,8 @@ class AbstractLowScaleModel(nn.Module):
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
return (extract_into_tensor(self.sqrt_alphas_cumprod.to(x_start.device), t, x_start.shape) * x_start +
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod.to(x_start.device), t, x_start.shape) * noise)
def forward(self, x):
return x, None

View File

@ -15,12 +15,12 @@ class CLIPEmbeddingNoiseAugmentation(ImageConcatWithNoiseAugmentation):
def scale(self, x):
# re-normalize to centered mean and unit variance
x = (x - self.data_mean) * 1. / self.data_std
x = (x - self.data_mean.to(x.device)) * 1. / self.data_std.to(x.device)
return x
def unscale(self, x):
# back to original data stats
x = (x * self.data_std) + self.data_mean
x = (x * self.data_std.to(x.device)) + self.data_mean.to(x.device)
return x
def forward(self, x, noise_level=None):