mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Refactor VAE code.
Replace constants with downscale_ratio and latent_channels.
This commit is contained in:
parent
8e2c99e3cf
commit
5eddfdd80c
18
comfy/sd.py
18
comfy/sd.py
@ -157,6 +157,8 @@ class VAE:
|
|||||||
|
|
||||||
self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) #These are for AutoencoderKL and need tweaking (should be lower)
|
self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) #These are for AutoencoderKL and need tweaking (should be lower)
|
||||||
self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype)
|
self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype)
|
||||||
|
self.downscale_ratio = 8
|
||||||
|
self.latent_channels = 4
|
||||||
|
|
||||||
if config is None:
|
if config is None:
|
||||||
if "decoder.mid.block_1.mix_factor" in sd:
|
if "decoder.mid.block_1.mix_factor" in sd:
|
||||||
@ -204,9 +206,9 @@ class VAE:
|
|||||||
|
|
||||||
decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float()
|
decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float()
|
||||||
output = torch.clamp((
|
output = torch.clamp((
|
||||||
(comfy.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, output_device=self.output_device, pbar = pbar) +
|
(comfy.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = self.downscale_ratio, output_device=self.output_device, pbar = pbar) +
|
||||||
comfy.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, output_device=self.output_device, pbar = pbar) +
|
comfy.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = self.downscale_ratio, output_device=self.output_device, pbar = pbar) +
|
||||||
comfy.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, output_device=self.output_device, pbar = pbar))
|
comfy.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = self.downscale_ratio, output_device=self.output_device, pbar = pbar))
|
||||||
/ 3.0) / 2.0, min=0.0, max=1.0)
|
/ 3.0) / 2.0, min=0.0, max=1.0)
|
||||||
return output
|
return output
|
||||||
|
|
||||||
@ -217,9 +219,9 @@ class VAE:
|
|||||||
pbar = comfy.utils.ProgressBar(steps)
|
pbar = comfy.utils.ProgressBar(steps)
|
||||||
|
|
||||||
encode_fn = lambda a: self.first_stage_model.encode((2. * a - 1.).to(self.vae_dtype).to(self.device)).float()
|
encode_fn = lambda a: self.first_stage_model.encode((2. * a - 1.).to(self.vae_dtype).to(self.device)).float()
|
||||||
samples = comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, output_device=self.output_device, pbar=pbar)
|
samples = comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
|
||||||
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, output_device=self.output_device, pbar=pbar)
|
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
|
||||||
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, output_device=self.output_device, pbar=pbar)
|
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
|
||||||
samples /= 3.0
|
samples /= 3.0
|
||||||
return samples
|
return samples
|
||||||
|
|
||||||
@ -231,7 +233,7 @@ class VAE:
|
|||||||
batch_number = int(free_memory / memory_used)
|
batch_number = int(free_memory / memory_used)
|
||||||
batch_number = max(1, batch_number)
|
batch_number = max(1, batch_number)
|
||||||
|
|
||||||
pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device=self.output_device)
|
pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * self.downscale_ratio), round(samples_in.shape[3] * self.downscale_ratio)), device=self.output_device)
|
||||||
for x in range(0, samples_in.shape[0], batch_number):
|
for x in range(0, samples_in.shape[0], batch_number):
|
||||||
samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
|
samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
|
||||||
pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples).to(self.output_device).float() + 1.0) / 2.0, min=0.0, max=1.0)
|
pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples).to(self.output_device).float() + 1.0) / 2.0, min=0.0, max=1.0)
|
||||||
@ -255,7 +257,7 @@ class VAE:
|
|||||||
free_memory = model_management.get_free_memory(self.device)
|
free_memory = model_management.get_free_memory(self.device)
|
||||||
batch_number = int(free_memory / memory_used)
|
batch_number = int(free_memory / memory_used)
|
||||||
batch_number = max(1, batch_number)
|
batch_number = max(1, batch_number)
|
||||||
samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device=self.output_device)
|
samples = torch.empty((pixel_samples.shape[0], self.latent_channels, round(pixel_samples.shape[2] // self.downscale_ratio), round(pixel_samples.shape[3] // self.downscale_ratio)), device=self.output_device)
|
||||||
for x in range(0, pixel_samples.shape[0], batch_number):
|
for x in range(0, pixel_samples.shape[0], batch_number):
|
||||||
pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.vae_dtype).to(self.device)
|
pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.vae_dtype).to(self.device)
|
||||||
samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).to(self.output_device).float()
|
samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).to(self.output_device).float()
|
||||||
|
Loading…
Reference in New Issue
Block a user