mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Working RescaleCFG node.
This was broken because of recent changes so I fixed it and moved it from the experiments repo.
This commit is contained in:
parent
3e0033ef30
commit
58d5d71a93
@ -248,7 +248,7 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, mod
|
||||
|
||||
cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, model_options)
|
||||
if "sampler_cfg_function" in model_options:
|
||||
args = {"cond": x - cond, "uncond": x - uncond, "cond_scale": cond_scale, "timestep": timestep, "input": x}
|
||||
args = {"cond": x - cond, "uncond": x - uncond, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep}
|
||||
return x - model_options["sampler_cfg_function"](args)
|
||||
else:
|
||||
return uncond + (cond - uncond) * cond_scale
|
||||
|
@ -123,6 +123,45 @@ class ModelSamplingDiscrete:
|
||||
m.add_object_patch("model_sampling", model_sampling)
|
||||
return (m, )
|
||||
|
||||
class RescaleCFG:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
|
||||
CATEGORY = "advanced/model"
|
||||
|
||||
def patch(self, model, multiplier):
|
||||
def rescale_cfg(args):
|
||||
cond = args["cond"]
|
||||
uncond = args["uncond"]
|
||||
cond_scale = args["cond_scale"]
|
||||
sigma = args["sigma"]
|
||||
x_orig = args["input"]
|
||||
|
||||
#rescale cfg has to be done on v-pred model output
|
||||
x = x_orig / (sigma * sigma + 1.0)
|
||||
cond = ((x - (x_orig - cond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)
|
||||
uncond = ((x - (x_orig - uncond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)
|
||||
|
||||
#rescalecfg
|
||||
x_cfg = uncond + cond_scale * (cond - uncond)
|
||||
ro_pos = torch.std(cond, dim=(1,2,3), keepdim=True)
|
||||
ro_cfg = torch.std(x_cfg, dim=(1,2,3), keepdim=True)
|
||||
|
||||
x_rescaled = x_cfg * (ro_pos / ro_cfg)
|
||||
x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg
|
||||
|
||||
return x_orig - (x - x_final * sigma / (sigma * sigma + 1.0) ** 0.5)
|
||||
|
||||
m = model.clone()
|
||||
m.set_model_sampler_cfg_function(rescale_cfg)
|
||||
return (m, )
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"ModelSamplingDiscrete": ModelSamplingDiscrete,
|
||||
"RescaleCFG": RescaleCFG,
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user