Add a T2IAdapterLoader node to load T2I-Adapter models.

They are loaded as CONTROL_NET objects because they are similar.
This commit is contained in:
comfyanonymous 2023-02-25 00:55:42 -05:00
parent fcb25d37db
commit 4e6b83a80a
4 changed files with 233 additions and 1 deletions

View File

@ -8,6 +8,7 @@ from ldm.util import instantiate_from_config
from ldm.models.autoencoder import AutoencoderKL from ldm.models.autoencoder import AutoencoderKL
from omegaconf import OmegaConf from omegaconf import OmegaConf
from .cldm import cldm from .cldm import cldm
from .t2i_adapter import adapter
from . import utils from . import utils
@ -388,7 +389,7 @@ class ControlNet:
self.control_model = model_management.load_if_low_vram(self.control_model) self.control_model = model_management.load_if_low_vram(self.control_model)
control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=cond_txt) control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=cond_txt)
self.control_model = model_management.unload_if_low_vram(self.control_model) self.control_model = model_management.unload_if_low_vram(self.control_model)
out = {'input':[], 'middle':[], 'output': []} out = {'middle':[], 'output': []}
autocast_enabled = torch.is_autocast_enabled() autocast_enabled = torch.is_autocast_enabled()
for i in range(len(control)): for i in range(len(control)):
@ -504,6 +505,95 @@ def load_controlnet(ckpt_path, model=None):
control = ControlNet(control_model) control = ControlNet(control_model)
return control return control
class T2IAdapter:
def __init__(self, t2i_model, channels_in, device="cuda"):
self.t2i_model = t2i_model
self.channels_in = channels_in
self.strength = 1.0
self.device = device
self.previous_controlnet = None
self.control_input = None
self.cond_hint_original = None
self.cond_hint = None
def get_control(self, x_noisy, t, cond_txt):
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt)
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").float().to(self.device)
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
self.t2i_model.to(self.device)
self.control_input = self.t2i_model(self.cond_hint)
self.t2i_model.cpu()
output_dtype = x_noisy.dtype
out = {'input':[]}
for i in range(len(self.control_input)):
key = 'input'
x = self.control_input[i] * self.strength
if x.dtype != output_dtype and not autocast_enabled:
x = x.to(output_dtype)
if control_prev is not None and key in control_prev:
index = len(control_prev[key]) - i * 3 - 3
prev = control_prev[key][index]
if prev is not None:
x += prev
out[key].insert(0, None)
out[key].insert(0, None)
out[key].insert(0, x)
if control_prev is not None and 'input' in control_prev:
for i in range(len(out['input'])):
if out['input'][i] is None:
out['input'][i] = control_prev['input'][i]
if control_prev is not None and 'middle' in control_prev:
out['middle'] = control_prev['middle']
if control_prev is not None and 'output' in control_prev:
out['output'] = control_prev['output']
return out
def set_cond_hint(self, cond_hint, strength=1.0):
self.cond_hint_original = cond_hint
self.strength = strength
return self
def set_previous_controlnet(self, controlnet):
self.previous_controlnet = controlnet
return self
def copy(self):
c = T2IAdapter(self.t2i_model, self.channels_in)
c.cond_hint_original = self.cond_hint_original
c.strength = self.strength
return c
def cleanup(self):
if self.previous_controlnet is not None:
self.previous_controlnet.cleanup()
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
def get_control_models(self):
out = []
if self.previous_controlnet is not None:
out += self.previous_controlnet.get_control_models()
return out
def load_t2i_adapter(ckpt_path, model=None):
t2i_data = load_torch_file(ckpt_path)
cin = t2i_data['conv_in.weight'].shape[1]
model_ad = adapter.Adapter(cin=cin, channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False)
model_ad.load_state_dict(t2i_data)
return T2IAdapter(model_ad, cin // 64)
def load_clip(ckpt_path, embedding_directory=None): def load_clip(ckpt_path, embedding_directory=None):
clip_data = load_torch_file(ckpt_path) clip_data = load_torch_file(ckpt_path)

View File

@ -0,0 +1,125 @@
#taken from https://github.com/TencentARC/T2I-Adapter
import torch
import torch.nn as nn
import torch.nn.functional as F
from ldm.modules.attention import SpatialTransformer, BasicTransformerBlock
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def avg_pool_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D average pooling module.
"""
if dims == 1:
return nn.AvgPool1d(*args, **kwargs)
elif dims == 2:
return nn.AvgPool2d(*args, **kwargs)
elif dims == 3:
return nn.AvgPool3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
stride = 2 if dims != 3 else (1, 2, 2)
if use_conv:
self.op = conv_nd(
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
)
else:
assert self.channels == self.out_channels
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
return self.op(x)
class ResnetBlock(nn.Module):
def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True):
super().__init__()
ps = ksize//2
if in_c != out_c or sk==False:
self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps)
else:
# print('n_in')
self.in_conv = None
self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1)
self.act = nn.ReLU()
self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps)
if sk==False:
self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps)
else:
self.skep = None
self.down = down
if self.down == True:
self.down_opt = Downsample(in_c, use_conv=use_conv)
def forward(self, x):
if self.down == True:
x = self.down_opt(x)
if self.in_conv is not None: # edit
x = self.in_conv(x)
h = self.block1(x)
h = self.act(h)
h = self.block2(h)
if self.skep is not None:
return h + self.skep(x)
else:
return h + x
class Adapter(nn.Module):
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True):
super(Adapter, self).__init__()
self.unshuffle = nn.PixelUnshuffle(8)
self.channels = channels
self.nums_rb = nums_rb
self.body = []
for i in range(len(channels)):
for j in range(nums_rb):
if (i!=0) and (j==0):
self.body.append(ResnetBlock(channels[i-1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv))
else:
self.body.append(ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
self.body = nn.ModuleList(self.body)
self.conv_in = nn.Conv2d(cin,channels[0], 3, 1, 1)
def forward(self, x):
# unshuffle
x = self.unshuffle(x)
# extract features
features = []
x = self.conv_in(x)
for i in range(len(self.channels)):
for j in range(self.nums_rb):
idx = i*self.nums_rb +j
x = self.body[idx](x)
features.append(x)
return features

View File

@ -292,6 +292,22 @@ class ControlNetApply:
c.append(n) c.append(n)
return (c, ) return (c, )
class T2IAdapterLoader:
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
t2i_adapter_dir = os.path.join(models_dir, "t2i_adapter")
@classmethod
def INPUT_TYPES(s):
return {"required": { "t2i_adapter_name": (filter_files_extensions(recursive_search(s.t2i_adapter_dir), supported_pt_extensions), )}}
RETURN_TYPES = ("CONTROL_NET",)
FUNCTION = "load_t2i_adapter"
CATEGORY = "loaders"
def load_t2i_adapter(self, t2i_adapter_name):
t2i_path = os.path.join(self.t2i_adapter_dir, t2i_adapter_name)
t2i_adapter = comfy.sd.load_t2i_adapter(t2i_path)
return (t2i_adapter,)
class CLIPLoader: class CLIPLoader:
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models") models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
@ -804,6 +820,7 @@ NODE_CLASS_MAPPINGS = {
"ControlNetApply": ControlNetApply, "ControlNetApply": ControlNetApply,
"ControlNetLoader": ControlNetLoader, "ControlNetLoader": ControlNetLoader,
"DiffControlNetLoader": DiffControlNetLoader, "DiffControlNetLoader": DiffControlNetLoader,
"T2IAdapterLoader": T2IAdapterLoader,
"VAEDecodeTiled": VAEDecodeTiled, "VAEDecodeTiled": VAEDecodeTiled,
} }