mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Allow having a different pooled output for each image in a batch.
This commit is contained in:
parent
0793eb9269
commit
492db2de8d
@ -181,7 +181,7 @@ class SDXLRefiner(BaseModel):
|
||||
out.append(self.embedder(torch.Tensor([crop_h])))
|
||||
out.append(self.embedder(torch.Tensor([crop_w])))
|
||||
out.append(self.embedder(torch.Tensor([aesthetic_score])))
|
||||
flat = torch.flatten(torch.cat(out))[None, ]
|
||||
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
|
||||
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
|
||||
|
||||
class SDXL(BaseModel):
|
||||
@ -206,5 +206,5 @@ class SDXL(BaseModel):
|
||||
out.append(self.embedder(torch.Tensor([crop_w])))
|
||||
out.append(self.embedder(torch.Tensor([target_height])))
|
||||
out.append(self.embedder(torch.Tensor([target_width])))
|
||||
flat = torch.flatten(torch.cat(out))[None, ]
|
||||
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
|
||||
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
|
||||
|
@ -7,6 +7,7 @@ from .ldm.models.diffusion.ddim import DDIMSampler
|
||||
from .ldm.modules.diffusionmodules.util import make_ddim_timesteps
|
||||
import math
|
||||
from comfy import model_base
|
||||
import comfy.utils
|
||||
|
||||
def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
|
||||
return abs(a*b) // math.gcd(a, b)
|
||||
@ -538,7 +539,7 @@ def encode_adm(model, conds, batch_size, width, height, device, prompt_type):
|
||||
|
||||
if adm_out is not None:
|
||||
x[1] = x[1].copy()
|
||||
x[1]["adm_encoded"] = torch.cat([adm_out] * batch_size).to(device)
|
||||
x[1]["adm_encoded"] = comfy.utils.repeat_to_batch_size(adm_out, batch_size).to(device)
|
||||
|
||||
return conds
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user