From 4774c3244eaa93c0f089c85e6967be7d76f93342 Mon Sep 17 00:00:00 2001 From: Kohaku-Blueleaf <59680068+KohakuBlueleaf@users.noreply.github.com> Date: Wed, 2 Apr 2025 09:21:39 +0800 Subject: [PATCH] Initial impl LoRA load/calculate_weight LoHa/LoKr/GLoRA load --- comfy/weight_adapter/glora.py | 54 +++++++++++++ comfy/weight_adapter/loha.py | 65 +++++++++++++++ comfy/weight_adapter/lokr.py | 89 +++++++++++++++++++++ comfy/weight_adapter/lora.py | 144 ++++++++++++++++++++++++++++++++++ 4 files changed, 352 insertions(+) create mode 100644 comfy/weight_adapter/glora.py create mode 100644 comfy/weight_adapter/loha.py create mode 100644 comfy/weight_adapter/lokr.py create mode 100644 comfy/weight_adapter/lora.py diff --git a/comfy/weight_adapter/glora.py b/comfy/weight_adapter/glora.py new file mode 100644 index 00000000..bdb9220e --- /dev/null +++ b/comfy/weight_adapter/glora.py @@ -0,0 +1,54 @@ +import logging +import torch +import comfy.utils +import comfy.model_management +import comfy.model_base +from comfy.lora import weight_decompose, pad_tensor_to_shape + +from .base import WeightAdapterBase + + +class GLoRAAdapter(WeightAdapterBase): + name = "glora" + + def __init__(self, loaded_keys, weights): + self.loaded_keys = loaded_keys + self.weights = weights + + @classmethod + def load( + cls, + x: str, + lora: dict[str, torch.Tensor], + alpha: float, + dora_scale: torch.Tensor, + loaded_keys: set[str] = None, + ) -> "GLoRAAdapter" | None: + if loaded_keys is None: + loaded_keys = set() + a1_name = "{}.a1.weight".format(x) + a2_name = "{}.a2.weight".format(x) + b1_name = "{}.b1.weight".format(x) + b2_name = "{}.b2.weight".format(x) + if a1_name in lora: + weights = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale)) + loaded_keys.add(a1_name) + loaded_keys.add(a2_name) + loaded_keys.add(b1_name) + loaded_keys.add(b2_name) + return cls(loaded_keys, weights) + else: + return None + + def calculate_weight( + self, + weight, + key, + strength, + strength_model, + offset, + function, + intermediate_dtype=torch.float32, + original_weight=None, + ): + pass diff --git a/comfy/weight_adapter/loha.py b/comfy/weight_adapter/loha.py new file mode 100644 index 00000000..b3267bc0 --- /dev/null +++ b/comfy/weight_adapter/loha.py @@ -0,0 +1,65 @@ +import logging +import torch +import comfy.utils +import comfy.model_management +import comfy.model_base +from comfy.lora import weight_decompose, pad_tensor_to_shape + +from .base import WeightAdapterBase + + +class LoHaAdapter(WeightAdapterBase): + name = "loha" + + def __init__(self, loaded_keys, weights): + self.loaded_keys = loaded_keys + self.weights = weights + + @classmethod + def load( + cls, + x: str, + lora: dict[str, torch.Tensor], + alpha: float, + dora_scale: torch.Tensor, + loaded_keys: set[str] = None, + ) -> "LoHaAdapter" | None: + if loaded_keys is None: + loaded_keys = set() + + hada_w1_a_name = "{}.hada_w1_a".format(x) + hada_w1_b_name = "{}.hada_w1_b".format(x) + hada_w2_a_name = "{}.hada_w2_a".format(x) + hada_w2_b_name = "{}.hada_w2_b".format(x) + hada_t1_name = "{}.hada_t1".format(x) + hada_t2_name = "{}.hada_t2".format(x) + if hada_w1_a_name in lora.keys(): + hada_t1 = None + hada_t2 = None + if hada_t1_name in lora.keys(): + hada_t1 = lora[hada_t1_name] + hada_t2 = lora[hada_t2_name] + loaded_keys.add(hada_t1_name) + loaded_keys.add(hada_t2_name) + + weights = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale)) + loaded_keys.add(hada_w1_a_name) + loaded_keys.add(hada_w1_b_name) + loaded_keys.add(hada_w2_a_name) + loaded_keys.add(hada_w2_b_name) + return cls(loaded_keys, weights) + else: + return None + + def calculate_weight( + self, + weight, + key, + strength, + strength_model, + offset, + function, + intermediate_dtype=torch.float32, + original_weight=None, + ): + pass diff --git a/comfy/weight_adapter/lokr.py b/comfy/weight_adapter/lokr.py new file mode 100644 index 00000000..206c80ae --- /dev/null +++ b/comfy/weight_adapter/lokr.py @@ -0,0 +1,89 @@ +import logging +import torch +import comfy.utils +import comfy.model_management +import comfy.model_base +from comfy.lora import weight_decompose, pad_tensor_to_shape + +from .base import WeightAdapterBase + + +class LoKrAdapter(WeightAdapterBase): + name = "lokr" + + def __init__(self, loaded_keys, weights): + self.loaded_keys = loaded_keys + self.weights = weights + + @classmethod + def load( + cls, + x: str, + lora: dict[str, torch.Tensor], + alpha: float, + dora_scale: torch.Tensor, + loaded_keys: set[str] = None, + ) -> "LoKrAdapter" | None: + if loaded_keys is None: + loaded_keys = set() + lokr_w1_name = "{}.lokr_w1".format(x) + lokr_w2_name = "{}.lokr_w2".format(x) + lokr_w1_a_name = "{}.lokr_w1_a".format(x) + lokr_w1_b_name = "{}.lokr_w1_b".format(x) + lokr_t2_name = "{}.lokr_t2".format(x) + lokr_w2_a_name = "{}.lokr_w2_a".format(x) + lokr_w2_b_name = "{}.lokr_w2_b".format(x) + + lokr_w1 = None + if lokr_w1_name in lora.keys(): + lokr_w1 = lora[lokr_w1_name] + loaded_keys.add(lokr_w1_name) + + lokr_w2 = None + if lokr_w2_name in lora.keys(): + lokr_w2 = lora[lokr_w2_name] + loaded_keys.add(lokr_w2_name) + + lokr_w1_a = None + if lokr_w1_a_name in lora.keys(): + lokr_w1_a = lora[lokr_w1_a_name] + loaded_keys.add(lokr_w1_a_name) + + lokr_w1_b = None + if lokr_w1_b_name in lora.keys(): + lokr_w1_b = lora[lokr_w1_b_name] + loaded_keys.add(lokr_w1_b_name) + + lokr_w2_a = None + if lokr_w2_a_name in lora.keys(): + lokr_w2_a = lora[lokr_w2_a_name] + loaded_keys.add(lokr_w2_a_name) + + lokr_w2_b = None + if lokr_w2_b_name in lora.keys(): + lokr_w2_b = lora[lokr_w2_b_name] + loaded_keys.add(lokr_w2_b_name) + + lokr_t2 = None + if lokr_t2_name in lora.keys(): + lokr_t2 = lora[lokr_t2_name] + loaded_keys.add(lokr_t2_name) + + if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None): + weights = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale)) + return cls(loaded_keys, weights) + else: + return None + + def calculate_weight( + self, + weight, + key, + strength, + strength_model, + offset, + function, + intermediate_dtype=torch.float32, + original_weight=None, + ): + pass diff --git a/comfy/weight_adapter/lora.py b/comfy/weight_adapter/lora.py new file mode 100644 index 00000000..b79bfd82 --- /dev/null +++ b/comfy/weight_adapter/lora.py @@ -0,0 +1,144 @@ +import logging +import torch +import comfy.utils +import comfy.model_management +import comfy.model_base +from comfy.lora import weight_decompose, pad_tensor_to_shape + +from .base import WeightAdapterBase + + +class LoRAAdapter(WeightAdapterBase): + name = "lora" + + def __init__(self, loaded_keys, weights): + self.loaded_keys = loaded_keys + self.weights = weights + + @classmethod + def load( + cls, + x: str, + lora: dict[str, torch.Tensor], + alpha: float, + dora_scale: torch.Tensor, + loaded_keys: set[str] = None, + ) -> "LoRAAdapter" | None: + if loaded_keys is None: + loaded_keys = set() + + reshape_name = "{}.reshape_weight".format(x) + regular_lora = "{}.lora_up.weight".format(x) + diffusers_lora = "{}_lora.up.weight".format(x) + diffusers2_lora = "{}.lora_B.weight".format(x) + diffusers3_lora = "{}.lora.up.weight".format(x) + mochi_lora = "{}.lora_B".format(x) + transformers_lora = "{}.lora_linear_layer.up.weight".format(x) + A_name = None + + if regular_lora in lora.keys(): + A_name = regular_lora + B_name = "{}.lora_down.weight".format(x) + mid_name = "{}.lora_mid.weight".format(x) + elif diffusers_lora in lora.keys(): + A_name = diffusers_lora + B_name = "{}_lora.down.weight".format(x) + mid_name = None + elif diffusers2_lora in lora.keys(): + A_name = diffusers2_lora + B_name = "{}.lora_A.weight".format(x) + mid_name = None + elif diffusers3_lora in lora.keys(): + A_name = diffusers3_lora + B_name = "{}.lora.down.weight".format(x) + mid_name = None + elif mochi_lora in lora.keys(): + A_name = mochi_lora + B_name = "{}.lora_A".format(x) + mid_name = None + elif transformers_lora in lora.keys(): + A_name = transformers_lora + B_name = "{}.lora_linear_layer.down.weight".format(x) + mid_name = None + + if A_name is not None: + mid = None + if mid_name is not None and mid_name in lora.keys(): + mid = lora[mid_name] + loaded_keys.add(mid_name) + reshape = None + if reshape_name in lora.keys(): + try: + reshape = lora[reshape_name].tolist() + loaded_keys.add(reshape_name) + except: + pass + weights = (lora[A_name], lora[B_name], alpha, mid, dora_scale, reshape) + loaded_keys.add(A_name) + loaded_keys.add(B_name) + return cls(loaded_keys, weights) + else: + return None + + def calculate_weight( + self, + weight, + key, + strength, + strength_model, + offset, + function, + intermediate_dtype=torch.float32, + original_weight=None, + ): + v = self.weights[1] + mat1 = comfy.model_management.cast_to_device( + v[0], weight.device, intermediate_dtype + ) + mat2 = comfy.model_management.cast_to_device( + v[1], weight.device, intermediate_dtype + ) + dora_scale = v[4] + reshape = v[5] + + if reshape is not None: + weight = pad_tensor_to_shape(weight, reshape) + + if v[2] is not None: + alpha = v[2] / mat2.shape[0] + else: + alpha = 1.0 + + if v[3] is not None: + # locon mid weights, hopefully the math is fine because I didn't properly test it + mat3 = comfy.model_management.cast_to_device( + v[3], weight.device, intermediate_dtype + ) + final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]] + mat2 = ( + torch.mm( + mat2.transpose(0, 1).flatten(start_dim=1), + mat3.transpose(0, 1).flatten(start_dim=1), + ) + .reshape(final_shape) + .transpose(0, 1) + ) + try: + lora_diff = torch.mm( + mat1.flatten(start_dim=1), mat2.flatten(start_dim=1) + ).reshape(weight.shape) + if dora_scale is not None: + weight = weight_decompose( + dora_scale, + weight, + lora_diff, + alpha, + strength, + intermediate_dtype, + function, + ) + else: + weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) + except Exception as e: + logging.error("ERROR {} {} {}".format(self.name, key, e)) + return weight