mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Raw torch is faster than einops?
This commit is contained in:
parent
11200de970
commit
413322645e
@ -2,7 +2,6 @@ import math
|
|||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from einops import rearrange
|
|
||||||
from torch import Tensor, nn
|
from torch import Tensor, nn
|
||||||
|
|
||||||
from .math import attention, rope
|
from .math import attention, rope
|
||||||
@ -37,9 +36,7 @@ def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 10
|
|||||||
"""
|
"""
|
||||||
t = time_factor * t
|
t = time_factor * t
|
||||||
half = dim // 2
|
half = dim // 2
|
||||||
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
|
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half)
|
||||||
t.device
|
|
||||||
)
|
|
||||||
|
|
||||||
args = t[:, None].float() * freqs[None]
|
args = t[:, None].float() * freqs[None]
|
||||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||||
@ -49,7 +46,6 @@ def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 10
|
|||||||
embedding = embedding.to(t)
|
embedding = embedding.to(t)
|
||||||
return embedding
|
return embedding
|
||||||
|
|
||||||
|
|
||||||
class MLPEmbedder(nn.Module):
|
class MLPEmbedder(nn.Module):
|
||||||
def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None):
|
def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -95,14 +91,6 @@ class SelfAttention(nn.Module):
|
|||||||
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
|
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
|
||||||
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device)
|
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device)
|
||||||
|
|
||||||
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
|
|
||||||
qkv = self.qkv(x)
|
|
||||||
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
|
||||||
q, k = self.norm(q, k, v)
|
|
||||||
x = attention(q, k, v, pe=pe)
|
|
||||||
x = self.proj(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class ModulationOut:
|
class ModulationOut:
|
||||||
@ -164,14 +152,14 @@ class DoubleStreamBlock(nn.Module):
|
|||||||
img_modulated = self.img_norm1(img)
|
img_modulated = self.img_norm1(img)
|
||||||
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
||||||
img_qkv = self.img_attn.qkv(img_modulated)
|
img_qkv = self.img_attn.qkv(img_modulated)
|
||||||
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||||
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
||||||
|
|
||||||
# prepare txt for attention
|
# prepare txt for attention
|
||||||
txt_modulated = self.txt_norm1(txt)
|
txt_modulated = self.txt_norm1(txt)
|
||||||
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
||||||
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
||||||
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||||
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
||||||
|
|
||||||
# run actual attention
|
# run actual attention
|
||||||
@ -236,7 +224,7 @@ class SingleStreamBlock(nn.Module):
|
|||||||
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
|
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
|
||||||
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
||||||
|
|
||||||
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||||
q, k = self.norm(q, k, v)
|
q, k = self.norm(q, k, v)
|
||||||
|
|
||||||
# compute attention
|
# compute attention
|
||||||
|
Loading…
Reference in New Issue
Block a user