Less seams in tiled outputs at the cost of more processing.

This commit is contained in:
comfyanonymous 2023-03-22 03:29:09 -04:00
parent c692509c2b
commit 4039616ca6

View File

@ -393,10 +393,16 @@ class VAE:
pixel_samples = pixel_samples.cpu().movedim(1,-1) pixel_samples = pixel_samples.cpu().movedim(1,-1)
return pixel_samples return pixel_samples
def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 8): def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
model_management.unload_model() model_management.unload_model()
self.first_stage_model = self.first_stage_model.to(self.device) self.first_stage_model = self.first_stage_model.to(self.device)
output = utils.tiled_scale(samples, lambda a: torch.clamp((self.first_stage_model.decode(1. / self.scale_factor * a.to(self.device)) + 1.0) / 2.0, min=0.0, max=1.0), tile_x, tile_y, overlap, upscale_amount = 8) decode_fn = lambda a: (self.first_stage_model.decode(1. / self.scale_factor * a.to(self.device)) + 1.0)
output = torch.clamp((
(utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8) +
utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8) +
utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8))
/ 3.0) / 2.0, min=0.0, max=1.0)
self.first_stage_model = self.first_stage_model.cpu() self.first_stage_model = self.first_stage_model.cpu()
return output.movedim(1,-1) return output.movedim(1,-1)
@ -414,6 +420,9 @@ class VAE:
self.first_stage_model = self.first_stage_model.to(self.device) self.first_stage_model = self.first_stage_model.to(self.device)
pixel_samples = pixel_samples.movedim(-1,1).to(self.device) pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
samples = utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4) samples = utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4)
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4)
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4)
samples /= 3.0
self.first_stage_model = self.first_stage_model.cpu() self.first_stage_model = self.first_stage_model.cpu()
samples = samples.cpu() samples = samples.cpu()
return samples return samples