Use inference dtype for unet memory usage estimation.

This commit is contained in:
comfyanonymous 2023-12-11 23:50:38 -05:00
parent 77755ab8db
commit 3152023fbc

View File

@ -177,9 +177,12 @@ class BaseModel(torch.nn.Module):
def memory_required(self, input_shape):
if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
dtype = self.get_dtype()
if self.manual_cast_dtype is not None:
dtype = self.manual_cast_dtype
#TODO: this needs to be tweaked
area = input_shape[0] * input_shape[2] * input_shape[3]
return (area * comfy.model_management.dtype_size(self.get_dtype()) / 50) * (1024 * 1024)
return (area * comfy.model_management.dtype_size(dtype) / 50) * (1024 * 1024)
else:
#TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
area = input_shape[0] * input_shape[2] * input_shape[3]