Lower CLIP memory usage by a bit.

This commit is contained in:
comfyanonymous 2024-07-31 01:32:35 -04:00
parent b85216a3c0
commit 2c038ccef0
4 changed files with 28 additions and 25 deletions

View File

@ -1,5 +1,6 @@
import torch import torch
from comfy.ldm.modules.attention import optimized_attention_for_device from comfy.ldm.modules.attention import optimized_attention_for_device
import comfy.ops
class CLIPAttention(torch.nn.Module): class CLIPAttention(torch.nn.Module):
def __init__(self, embed_dim, heads, dtype, device, operations): def __init__(self, embed_dim, heads, dtype, device, operations):
@ -71,13 +72,13 @@ class CLIPEncoder(torch.nn.Module):
return x, intermediate return x, intermediate
class CLIPEmbeddings(torch.nn.Module): class CLIPEmbeddings(torch.nn.Module):
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None): def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None, operations=None):
super().__init__() super().__init__()
self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim, dtype=dtype, device=device) self.token_embedding = operations.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device) self.position_embedding = operations.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
def forward(self, input_tokens): def forward(self, input_tokens, dtype=torch.float32):
return self.token_embedding(input_tokens) + self.position_embedding.weight return self.token_embedding(input_tokens, out_dtype=dtype) + comfy.ops.cast_to(self.position_embedding.weight, dtype=dtype, device=input_tokens.device)
class CLIPTextModel_(torch.nn.Module): class CLIPTextModel_(torch.nn.Module):
@ -90,12 +91,12 @@ class CLIPTextModel_(torch.nn.Module):
self.eos_token_id = config_dict["eos_token_id"] self.eos_token_id = config_dict["eos_token_id"]
super().__init__() super().__init__()
self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device) self.embeddings = CLIPEmbeddings(embed_dim, dtype=dtype, device=device, operations=operations)
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device) self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True): def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
x = self.embeddings(input_tokens) x = self.embeddings(input_tokens, dtype=dtype)
mask = None mask = None
if attention_mask is not None: if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]) mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
@ -154,11 +155,11 @@ class CLIPVisionEmbeddings(torch.nn.Module):
num_patches = (image_size // patch_size) ** 2 num_patches = (image_size // patch_size) ** 2
num_positions = num_patches + 1 num_positions = num_patches + 1
self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device) self.position_embedding = operations.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
def forward(self, pixel_values): def forward(self, pixel_values):
embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2) embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2)
return torch.cat([self.class_embedding.to(embeds.device).expand(pixel_values.shape[0], 1, -1), embeds], dim=1) + self.position_embedding.weight.to(embeds.device) return torch.cat([comfy.ops.cast_to_input(self.class_embedding, embeds).expand(pixel_values.shape[0], 1, -1), embeds], dim=1) + comfy.ops.cast_to_input(self.position_embedding.weight, embeds)
class CLIPVision(torch.nn.Module): class CLIPVision(torch.nn.Module):
@ -170,7 +171,7 @@ class CLIPVision(torch.nn.Module):
intermediate_size = config_dict["intermediate_size"] intermediate_size = config_dict["intermediate_size"]
intermediate_activation = config_dict["hidden_act"] intermediate_activation = config_dict["hidden_act"]
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], dtype=torch.float32, device=device, operations=operations) self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], dtype=dtype, device=device, operations=operations)
self.pre_layrnorm = operations.LayerNorm(embed_dim) self.pre_layrnorm = operations.LayerNorm(embed_dim)
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
self.post_layernorm = operations.LayerNorm(embed_dim) self.post_layernorm = operations.LayerNorm(embed_dim)

View File

@ -94,7 +94,8 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
with open(textmodel_json_config) as f: with open(textmodel_json_config) as f:
config = json.load(f) config = json.load(f)
self.transformer = model_class(config, dtype, device, comfy.ops.manual_cast) self.operations = comfy.ops.manual_cast
self.transformer = model_class(config, dtype, device, self.operations)
self.num_layers = self.transformer.num_layers self.num_layers = self.transformer.num_layers
self.max_length = max_length self.max_length = max_length
@ -161,7 +162,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
n = token_dict_size n = token_dict_size
if len(embedding_weights) > 0: if len(embedding_weights) > 0:
new_embedding = torch.nn.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype) new_embedding = self.operations.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
new_embedding.weight[:token_dict_size] = current_embeds.weight new_embedding.weight[:token_dict_size] = current_embeds.weight
for x in embedding_weights: for x in embedding_weights:
new_embedding.weight[n] = x new_embedding.weight[n] = x
@ -194,7 +195,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
if self.enable_attention_masks: if self.enable_attention_masks:
attention_mask_model = attention_mask attention_mask_model = attention_mask
outputs = self.transformer(tokens, attention_mask_model, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state) outputs = self.transformer(tokens, attention_mask_model, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
self.transformer.set_input_embeddings(backup_embeds) self.transformer.set_input_embeddings(backup_embeds)
if self.layer == "last": if self.layer == "last":

View File

@ -1,5 +1,6 @@
import torch import torch
from comfy.ldm.modules.attention import optimized_attention_for_device from comfy.ldm.modules.attention import optimized_attention_for_device
import comfy.ops
class BertAttention(torch.nn.Module): class BertAttention(torch.nn.Module):
def __init__(self, embed_dim, heads, dtype, device, operations): def __init__(self, embed_dim, heads, dtype, device, operations):
@ -86,19 +87,19 @@ class BertEncoder(torch.nn.Module):
class BertEmbeddings(torch.nn.Module): class BertEmbeddings(torch.nn.Module):
def __init__(self, vocab_size, max_position_embeddings, type_vocab_size, pad_token_id, embed_dim, layer_norm_eps, dtype, device, operations): def __init__(self, vocab_size, max_position_embeddings, type_vocab_size, pad_token_id, embed_dim, layer_norm_eps, dtype, device, operations):
super().__init__() super().__init__()
self.word_embeddings = torch.nn.Embedding(vocab_size, embed_dim, padding_idx=pad_token_id, dtype=dtype, device=device) self.word_embeddings = operations.Embedding(vocab_size, embed_dim, padding_idx=pad_token_id, dtype=dtype, device=device)
self.position_embeddings = torch.nn.Embedding(max_position_embeddings, embed_dim, dtype=dtype, device=device) self.position_embeddings = operations.Embedding(max_position_embeddings, embed_dim, dtype=dtype, device=device)
self.token_type_embeddings = torch.nn.Embedding(type_vocab_size, embed_dim, dtype=dtype, device=device) self.token_type_embeddings = operations.Embedding(type_vocab_size, embed_dim, dtype=dtype, device=device)
self.LayerNorm = operations.LayerNorm(embed_dim, eps=layer_norm_eps, dtype=dtype, device=device) self.LayerNorm = operations.LayerNorm(embed_dim, eps=layer_norm_eps, dtype=dtype, device=device)
def forward(self, input_tokens, token_type_ids=None): def forward(self, input_tokens, token_type_ids=None, dtype=None):
x = self.word_embeddings(input_tokens) x = self.word_embeddings(input_tokens, out_dtype=dtype)
x += self.position_embeddings.weight[:x.shape[1]] x += comfy.ops.cast_to_input(self.position_embeddings.weight[:x.shape[1]], x)
if token_type_ids is not None: if token_type_ids is not None:
x += self.token_type_embeddings(token_type_ids) x += self.token_type_embeddings(token_type_ids, out_dtype=x.dtype)
else: else:
x += self.token_type_embeddings.weight[0] x += comfy.ops.cast_to_input(self.token_type_embeddings.weight[0], x)
x = self.LayerNorm(x) x = self.LayerNorm(x)
return x return x
@ -112,8 +113,8 @@ class BertModel_(torch.nn.Module):
self.embeddings = BertEmbeddings(config_dict["vocab_size"], config_dict["max_position_embeddings"], config_dict["type_vocab_size"], config_dict["pad_token_id"], embed_dim, layer_norm_eps, dtype, device, operations) self.embeddings = BertEmbeddings(config_dict["vocab_size"], config_dict["max_position_embeddings"], config_dict["type_vocab_size"], config_dict["pad_token_id"], embed_dim, layer_norm_eps, dtype, device, operations)
self.encoder = BertEncoder(config_dict["num_hidden_layers"], embed_dim, config_dict["intermediate_size"], config_dict["num_attention_heads"], layer_norm_eps, dtype, device, operations) self.encoder = BertEncoder(config_dict["num_hidden_layers"], embed_dim, config_dict["intermediate_size"], config_dict["num_attention_heads"], layer_norm_eps, dtype, device, operations)
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True): def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
x = self.embeddings(input_tokens) x = self.embeddings(input_tokens, dtype=dtype)
mask = None mask = None
if attention_mask is not None: if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]) mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])

View File

@ -200,7 +200,7 @@ class T5Stack(torch.nn.Module):
self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations) self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations)
# self.dropout = nn.Dropout(config.dropout_rate) # self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True): def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
mask = None mask = None
if attention_mask is not None: if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]) mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])