mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-04-15 16:13:29 +00:00
Merge branch 'master' into multigpu_support
This commit is contained in:
commit
2145a202eb
2
.github/workflows/stable-release.yml
vendored
2
.github/workflows/stable-release.yml
vendored
@ -22,7 +22,7 @@ on:
|
||||
description: 'Python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "7"
|
||||
default: "8"
|
||||
|
||||
|
||||
jobs:
|
||||
|
4
.github/workflows/test-build.yml
vendored
4
.github/workflows/test-build.yml
vendored
@ -18,7 +18,7 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: ["3.8", "3.9", "3.10", "3.11"]
|
||||
python-version: ["3.9", "3.10", "3.11", "3.12"]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
@ -28,4 +28,4 @@ jobs:
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install -r requirements.txt
|
||||
pip install -r requirements.txt
|
||||
|
@ -29,7 +29,7 @@ on:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "7"
|
||||
default: "8"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
|
@ -19,7 +19,7 @@ on:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "7"
|
||||
default: "8"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
|
@ -1,258 +0,0 @@
|
||||
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# Copied from Nvidia Cosmos code.
|
||||
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from typing import Callable, List, Tuple, Optional, Any
|
||||
import math
|
||||
from tqdm.auto import trange
|
||||
|
||||
|
||||
def common_broadcast(x: Tensor, y: Tensor) -> tuple[Tensor, Tensor]:
|
||||
ndims1 = x.ndim
|
||||
ndims2 = y.ndim
|
||||
|
||||
if ndims1 < ndims2:
|
||||
x = x.reshape(x.shape + (1,) * (ndims2 - ndims1))
|
||||
elif ndims2 < ndims1:
|
||||
y = y.reshape(y.shape + (1,) * (ndims1 - ndims2))
|
||||
|
||||
return x, y
|
||||
|
||||
|
||||
def batch_mul(x: Tensor, y: Tensor) -> Tensor:
|
||||
x, y = common_broadcast(x, y)
|
||||
return x * y
|
||||
|
||||
|
||||
def phi1(t: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Compute the first order phi function: (exp(t) - 1) / t.
|
||||
|
||||
Args:
|
||||
t: Input tensor.
|
||||
|
||||
Returns:
|
||||
Tensor: Result of phi1 function.
|
||||
"""
|
||||
input_dtype = t.dtype
|
||||
t = t.to(dtype=torch.float32)
|
||||
return (torch.expm1(t) / t).to(dtype=input_dtype)
|
||||
|
||||
|
||||
def phi2(t: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Compute the second order phi function: (phi1(t) - 1) / t.
|
||||
|
||||
Args:
|
||||
t: Input tensor.
|
||||
|
||||
Returns:
|
||||
Tensor: Result of phi2 function.
|
||||
"""
|
||||
input_dtype = t.dtype
|
||||
t = t.to(dtype=torch.float32)
|
||||
return ((phi1(t) - 1.0) / t).to(dtype=input_dtype)
|
||||
|
||||
|
||||
def res_x0_rk2_step(
|
||||
x_s: torch.Tensor,
|
||||
t: torch.Tensor,
|
||||
s: torch.Tensor,
|
||||
x0_s: torch.Tensor,
|
||||
s1: torch.Tensor,
|
||||
x0_s1: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Perform a residual-based 2nd order Runge-Kutta step.
|
||||
|
||||
Args:
|
||||
x_s: Current state tensor.
|
||||
t: Target time tensor.
|
||||
s: Current time tensor.
|
||||
x0_s: Prediction at current time.
|
||||
s1: Intermediate time tensor.
|
||||
x0_s1: Prediction at intermediate time.
|
||||
|
||||
Returns:
|
||||
Tensor: Updated state tensor.
|
||||
|
||||
Raises:
|
||||
AssertionError: If step size is too small.
|
||||
"""
|
||||
s = -torch.log(s)
|
||||
t = -torch.log(t)
|
||||
m = -torch.log(s1)
|
||||
|
||||
dt = t - s
|
||||
assert not torch.any(torch.isclose(dt, torch.zeros_like(dt), atol=1e-6)), "Step size is too small"
|
||||
assert not torch.any(torch.isclose(m - s, torch.zeros_like(dt), atol=1e-6)), "Step size is too small"
|
||||
|
||||
c2 = (m - s) / dt
|
||||
phi1_val, phi2_val = phi1(-dt), phi2(-dt)
|
||||
|
||||
# Handle edge case where t = s = m
|
||||
b1 = torch.nan_to_num(phi1_val - 1.0 / c2 * phi2_val, nan=0.0)
|
||||
b2 = torch.nan_to_num(1.0 / c2 * phi2_val, nan=0.0)
|
||||
|
||||
return batch_mul(torch.exp(-dt), x_s) + batch_mul(dt, batch_mul(b1, x0_s) + batch_mul(b2, x0_s1))
|
||||
|
||||
|
||||
def reg_x0_euler_step(
|
||||
x_s: torch.Tensor,
|
||||
s: torch.Tensor,
|
||||
t: torch.Tensor,
|
||||
x0_s: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Perform a regularized Euler step based on x0 prediction.
|
||||
|
||||
Args:
|
||||
x_s: Current state tensor.
|
||||
s: Current time tensor.
|
||||
t: Target time tensor.
|
||||
x0_s: Prediction at current time.
|
||||
|
||||
Returns:
|
||||
Tuple[Tensor, Tensor]: Updated state tensor and current prediction.
|
||||
"""
|
||||
coef_x0 = (s - t) / s
|
||||
coef_xs = t / s
|
||||
return batch_mul(coef_x0, x0_s) + batch_mul(coef_xs, x_s), x0_s
|
||||
|
||||
|
||||
def order2_fn(
|
||||
x_s: torch.Tensor, s: torch.Tensor, t: torch.Tensor, x0_s: torch.Tensor, x0_preds: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
||||
"""
|
||||
impl the second order multistep method in https://arxiv.org/pdf/2308.02157
|
||||
Adams Bashforth approach!
|
||||
"""
|
||||
if x0_preds:
|
||||
x0_s1, s1 = x0_preds[0]
|
||||
x_t = res_x0_rk2_step(x_s, t, s, x0_s, s1, x0_s1)
|
||||
else:
|
||||
x_t = reg_x0_euler_step(x_s, s, t, x0_s)[0]
|
||||
return x_t, [(x0_s, s)]
|
||||
|
||||
|
||||
class SolverConfig:
|
||||
is_multi: bool = True
|
||||
rk: str = "2mid"
|
||||
multistep: str = "2ab"
|
||||
s_churn: float = 0.0
|
||||
s_t_max: float = float("inf")
|
||||
s_t_min: float = 0.0
|
||||
s_noise: float = 1.0
|
||||
|
||||
|
||||
def fori_loop(lower: int, upper: int, body_fun: Callable[[int, Any], Any], init_val: Any, disable=None) -> Any:
|
||||
"""
|
||||
Implements a for loop with a function.
|
||||
|
||||
Args:
|
||||
lower: Lower bound of the loop (inclusive).
|
||||
upper: Upper bound of the loop (exclusive).
|
||||
body_fun: Function to be applied in each iteration.
|
||||
init_val: Initial value for the loop.
|
||||
|
||||
Returns:
|
||||
The final result after all iterations.
|
||||
"""
|
||||
val = init_val
|
||||
for i in trange(lower, upper, disable=disable):
|
||||
val = body_fun(i, val)
|
||||
return val
|
||||
|
||||
|
||||
def differential_equation_solver(
|
||||
x0_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
|
||||
sigmas_L: torch.Tensor,
|
||||
solver_cfg: SolverConfig,
|
||||
noise_sampler,
|
||||
callback=None,
|
||||
disable=None,
|
||||
) -> Callable[[torch.Tensor], torch.Tensor]:
|
||||
"""
|
||||
Creates a differential equation solver function.
|
||||
|
||||
Args:
|
||||
x0_fn: Function to compute x0 prediction.
|
||||
sigmas_L: Tensor of sigma values with shape [L,].
|
||||
solver_cfg: Configuration for the solver.
|
||||
|
||||
Returns:
|
||||
A function that solves the differential equation.
|
||||
"""
|
||||
num_step = len(sigmas_L) - 1
|
||||
|
||||
# if solver_cfg.is_multi:
|
||||
# update_step_fn = get_multi_step_fn(solver_cfg.multistep)
|
||||
# else:
|
||||
# update_step_fn = get_runge_kutta_fn(solver_cfg.rk)
|
||||
update_step_fn = order2_fn
|
||||
|
||||
eta = min(solver_cfg.s_churn / (num_step + 1), math.sqrt(1.2) - 1)
|
||||
|
||||
def sample_fn(input_xT_B_StateShape: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Samples from the differential equation.
|
||||
|
||||
Args:
|
||||
input_xT_B_StateShape: Input tensor with shape [B, StateShape].
|
||||
|
||||
Returns:
|
||||
Output tensor with shape [B, StateShape].
|
||||
"""
|
||||
ones_B = torch.ones(input_xT_B_StateShape.size(0), device=input_xT_B_StateShape.device, dtype=torch.float32)
|
||||
|
||||
def step_fn(
|
||||
i_th: int, state: Tuple[torch.Tensor, Optional[List[torch.Tensor]]]
|
||||
) -> Tuple[torch.Tensor, Optional[List[torch.Tensor]]]:
|
||||
input_x_B_StateShape, x0_preds = state
|
||||
sigma_cur_0, sigma_next_0 = sigmas_L[i_th], sigmas_L[i_th + 1]
|
||||
|
||||
if sigma_next_0 == 0:
|
||||
output_x_B_StateShape = x0_pred_B_StateShape = x0_fn(input_x_B_StateShape, sigma_cur_0 * ones_B)
|
||||
else:
|
||||
# algorithm 2: line 4-6
|
||||
if solver_cfg.s_t_min < sigma_cur_0 < solver_cfg.s_t_max and eta > 0:
|
||||
hat_sigma_cur_0 = sigma_cur_0 + eta * sigma_cur_0
|
||||
input_x_B_StateShape = input_x_B_StateShape + (
|
||||
hat_sigma_cur_0**2 - sigma_cur_0**2
|
||||
).sqrt() * solver_cfg.s_noise * noise_sampler(sigma_cur_0, sigma_next_0) # torch.randn_like(input_x_B_StateShape)
|
||||
sigma_cur_0 = hat_sigma_cur_0
|
||||
|
||||
if solver_cfg.is_multi:
|
||||
x0_pred_B_StateShape = x0_fn(input_x_B_StateShape, sigma_cur_0 * ones_B)
|
||||
output_x_B_StateShape, x0_preds = update_step_fn(
|
||||
input_x_B_StateShape, sigma_cur_0 * ones_B, sigma_next_0 * ones_B, x0_pred_B_StateShape, x0_preds
|
||||
)
|
||||
else:
|
||||
output_x_B_StateShape, x0_preds = update_step_fn(
|
||||
input_x_B_StateShape, sigma_cur_0 * ones_B, sigma_next_0 * ones_B, x0_fn
|
||||
)
|
||||
|
||||
if callback is not None:
|
||||
callback({'x': input_x_B_StateShape, 'i': i_th, 'sigma': sigma_cur_0, 'sigma_hat': sigma_cur_0, 'denoised': x0_pred_B_StateShape})
|
||||
|
||||
return output_x_B_StateShape, x0_preds
|
||||
|
||||
x_at_eps, _ = fori_loop(0, num_step, step_fn, [input_xT_B_StateShape, None], disable=disable)
|
||||
return x_at_eps
|
||||
|
||||
return sample_fn
|
@ -8,7 +8,6 @@ from tqdm.auto import trange, tqdm
|
||||
|
||||
from . import utils
|
||||
from . import deis
|
||||
from . import res
|
||||
import comfy.model_patcher
|
||||
import comfy.model_sampling
|
||||
|
||||
@ -1268,18 +1267,72 @@ def sample_dpmpp_2m_cfg_pp(model, x, sigmas, extra_args=None, callback=None, dis
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
||||
def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None, cfg_pp=False):
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
sigma_fn = lambda t: t.neg().exp()
|
||||
t_fn = lambda sigma: sigma.log().neg()
|
||||
phi1_fn = lambda t: torch.expm1(t) / t
|
||||
phi2_fn = lambda t: (phi1_fn(t) - 1.0) / t
|
||||
|
||||
x0_func = lambda x, sigma: model(x, sigma, **extra_args)
|
||||
old_denoised = None
|
||||
uncond_denoised = None
|
||||
def post_cfg_function(args):
|
||||
nonlocal uncond_denoised
|
||||
uncond_denoised = args["uncond_denoised"]
|
||||
return args["denoised"]
|
||||
|
||||
solver_cfg = res.SolverConfig()
|
||||
solver_cfg.s_churn = s_churn
|
||||
solver_cfg.s_t_max = s_tmax
|
||||
solver_cfg.s_t_min = s_tmin
|
||||
solver_cfg.s_noise = s_noise
|
||||
if cfg_pp:
|
||||
model_options = extra_args.get("model_options", {}).copy()
|
||||
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
||||
|
||||
x = res.differential_equation_solver(x0_func, sigmas, solver_cfg, noise_sampler, callback=callback, disable=disable)(x)
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
if s_churn > 0:
|
||||
gamma = min(s_churn / (len(sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.0
|
||||
sigma_hat = sigmas[i] * (gamma + 1)
|
||||
else:
|
||||
gamma = 0
|
||||
sigma_hat = sigmas[i]
|
||||
|
||||
if gamma > 0:
|
||||
eps = torch.randn_like(x) * s_noise
|
||||
x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5
|
||||
denoised = model(x, sigma_hat * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigma_hat, "denoised": denoised})
|
||||
if sigmas[i + 1] == 0 or old_denoised is None:
|
||||
# Euler method
|
||||
if cfg_pp:
|
||||
d = to_d(x, sigma_hat, uncond_denoised)
|
||||
x = denoised + d * sigmas[i + 1]
|
||||
else:
|
||||
d = to_d(x, sigma_hat, denoised)
|
||||
dt = sigmas[i + 1] - sigma_hat
|
||||
x = x + d * dt
|
||||
else:
|
||||
# Second order multistep method in https://arxiv.org/pdf/2308.02157
|
||||
t, t_next, t_prev = t_fn(sigmas[i]), t_fn(sigmas[i + 1]), t_fn(sigmas[i - 1])
|
||||
h = t_next - t
|
||||
c2 = (t_prev - t) / h
|
||||
|
||||
phi1_val, phi2_val = phi1_fn(-h), phi2_fn(-h)
|
||||
b1 = torch.nan_to_num(phi1_val - 1.0 / c2 * phi2_val, nan=0.0)
|
||||
b2 = torch.nan_to_num(1.0 / c2 * phi2_val, nan=0.0)
|
||||
|
||||
if cfg_pp:
|
||||
x = x + (denoised - uncond_denoised)
|
||||
|
||||
x = (sigma_fn(t_next) / sigma_fn(t)) * x + h * (b1 * denoised + b2 * old_denoised)
|
||||
|
||||
old_denoised = denoised
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
||||
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_churn=s_churn, s_tmin=s_tmin, s_tmax=s_tmax, s_noise=s_noise, noise_sampler=noise_sampler, cfg_pp=False)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_res_multistep_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
||||
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_churn=s_churn, s_tmin=s_tmin, s_tmax=s_tmax, s_noise=s_noise, noise_sampler=noise_sampler, cfg_pp=True)
|
||||
|
@ -189,9 +189,10 @@ class BaseModel(torch.nn.Module):
|
||||
|
||||
if denoise_mask is not None:
|
||||
if len(denoise_mask.shape) == len(noise.shape):
|
||||
denoise_mask = denoise_mask[:,:1]
|
||||
denoise_mask = denoise_mask[:, :1]
|
||||
|
||||
denoise_mask = denoise_mask.reshape((-1, 1, denoise_mask.shape[-2], denoise_mask.shape[-1]))
|
||||
num_dim = noise.ndim - 2
|
||||
denoise_mask = denoise_mask.reshape((-1, 1) + tuple(denoise_mask.shape[-num_dim:]))
|
||||
if denoise_mask.shape[-2:] != noise.shape[-2:]:
|
||||
denoise_mask = utils.common_upscale(denoise_mask, noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
denoise_mask = utils.resize_to_batch_size(denoise_mask.round(), noise.shape[0])
|
||||
@ -201,12 +202,16 @@ class BaseModel(torch.nn.Module):
|
||||
if ck == "mask":
|
||||
cond_concat.append(denoise_mask.to(device))
|
||||
elif ck == "masked_image":
|
||||
cond_concat.append(concat_latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
|
||||
cond_concat.append(concat_latent_image.to(device)) # NOTE: the latent_image should be masked by the mask in pixel space
|
||||
elif ck == "mask_inverted":
|
||||
cond_concat.append(1.0 - denoise_mask.to(device))
|
||||
else:
|
||||
if ck == "mask":
|
||||
cond_concat.append(torch.ones_like(noise)[:,:1])
|
||||
cond_concat.append(torch.ones_like(noise)[:, :1])
|
||||
elif ck == "masked_image":
|
||||
cond_concat.append(self.blank_inpaint_image_like(noise))
|
||||
elif ck == "mask_inverted":
|
||||
cond_concat.append(torch.zeros_like(noise)[:, :1])
|
||||
data = torch.cat(cond_concat, dim=1)
|
||||
return data
|
||||
return None
|
||||
@ -294,6 +299,9 @@ class BaseModel(torch.nn.Module):
|
||||
return blank_image
|
||||
self.blank_inpaint_image_like = blank_inpaint_image_like
|
||||
|
||||
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs):
|
||||
return self.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(noise.shape) - 1)), noise, latent_image)
|
||||
|
||||
def memory_required(self, input_shape):
|
||||
if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
|
||||
dtype = self.get_dtype()
|
||||
@ -859,8 +867,11 @@ class HunyuanVideo(BaseModel):
|
||||
return out
|
||||
|
||||
class CosmosVideo(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.EDM, device=None):
|
||||
def __init__(self, model_config, model_type=ModelType.EDM, image_to_video=False, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.cosmos.model.GeneralDIT)
|
||||
self.image_to_video = image_to_video
|
||||
if self.image_to_video:
|
||||
self.concat_keys = ("mask_inverted",)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
@ -873,3 +884,11 @@ class CosmosVideo(BaseModel):
|
||||
|
||||
out['fps'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", None))
|
||||
return out
|
||||
|
||||
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs):
|
||||
sigma = sigma.reshape([sigma.shape[0]] + [1] * (len(noise.shape) - 1))
|
||||
sigma_noise_augmentation = 0 #TODO
|
||||
if sigma_noise_augmentation != 0:
|
||||
latent_image = latent_image + noise
|
||||
latent_image = self.model_sampling.calculate_input(torch.tensor([sigma_noise_augmentation], device=latent_image.device, dtype=latent_image.dtype), latent_image)
|
||||
return latent_image * ((sigma ** 2 + self.model_sampling.sigma_data ** 2) ** 0.5)
|
||||
|
@ -245,13 +245,14 @@ def detect_unet_config(state_dict, key_prefix):
|
||||
dit_config["max_img_h"] = 240
|
||||
dit_config["max_img_w"] = 240
|
||||
dit_config["max_frames"] = 128
|
||||
dit_config["in_channels"] = 16
|
||||
concat_padding_mask = True
|
||||
dit_config["in_channels"] = (state_dict['{}x_embedder.proj.1.weight'.format(key_prefix)].shape[1] // 4) - int(concat_padding_mask)
|
||||
dit_config["out_channels"] = 16
|
||||
dit_config["patch_spatial"] = 2
|
||||
dit_config["patch_temporal"] = 1
|
||||
dit_config["model_channels"] = state_dict['{}blocks.block0.blocks.0.block.attn.to_q.0.weight'.format(key_prefix)].shape[0]
|
||||
dit_config["block_config"] = "FA-CA-MLP"
|
||||
dit_config["concat_padding_mask"] = True
|
||||
dit_config["concat_padding_mask"] = concat_padding_mask
|
||||
dit_config["pos_emb_cls"] = "rope3d"
|
||||
dit_config["pos_emb_learnable"] = False
|
||||
dit_config["pos_emb_interpolation"] = "crop"
|
||||
|
@ -548,7 +548,7 @@ class KSamplerX0Inpaint:
|
||||
if "denoise_mask_function" in model_options:
|
||||
denoise_mask = model_options["denoise_mask_function"](sigma, denoise_mask, extra_options={"model": self.inner_model, "sigmas": self.sigmas})
|
||||
latent_mask = 1. - denoise_mask
|
||||
x = x * denoise_mask + self.inner_model.inner_model.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1)), self.noise, self.latent_image) * latent_mask
|
||||
x = x * denoise_mask + self.inner_model.inner_model.scale_latent_inpaint(x=x, sigma=sigma, noise=self.noise, latent_image=self.latent_image) * latent_mask
|
||||
out = self.inner_model(x, sigma, model_options=model_options, seed=seed)
|
||||
if denoise_mask is not None:
|
||||
out = out * denoise_mask + self.latent_image * latent_mask
|
||||
@ -859,7 +859,7 @@ class Sampler:
|
||||
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
|
||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
|
||||
"ipndm", "ipndm_v", "deis", "res_multistep"]
|
||||
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp"]
|
||||
|
||||
class KSAMPLER(Sampler):
|
||||
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
|
||||
|
@ -534,7 +534,7 @@ class VAE:
|
||||
def encode(self, pixel_samples):
|
||||
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
|
||||
pixel_samples = pixel_samples.movedim(-1, 1)
|
||||
if self.latent_dim == 3:
|
||||
if self.latent_dim == 3 and pixel_samples.ndim < 5:
|
||||
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
|
||||
try:
|
||||
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
|
||||
|
@ -388,13 +388,10 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
|
||||
import safetensors.torch
|
||||
embed = safetensors.torch.load_file(embed_path, device="cpu")
|
||||
else:
|
||||
if 'weights_only' in torch.load.__code__.co_varnames:
|
||||
try:
|
||||
embed = torch.load(embed_path, weights_only=True, map_location="cpu")
|
||||
except:
|
||||
embed_out = safe_load_embed_zip(embed_path)
|
||||
else:
|
||||
embed = torch.load(embed_path, map_location="cpu")
|
||||
try:
|
||||
embed = torch.load(embed_path, weights_only=True, map_location="cpu")
|
||||
except:
|
||||
embed_out = safe_load_embed_zip(embed_path)
|
||||
except Exception:
|
||||
logging.warning("{}\n\nerror loading embedding, skipping loading: {}".format(traceback.format_exc(), embedding_name))
|
||||
return None
|
||||
|
@ -824,9 +824,10 @@ class HunyuanVideo(supported_models_base.BASE):
|
||||
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}llama.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideoTokenizer, comfy.text_encoders.hunyuan_video.hunyuan_video_clip(**hunyuan_detect))
|
||||
|
||||
class Cosmos(supported_models_base.BASE):
|
||||
class CosmosT2V(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "cosmos",
|
||||
"in_channels": 16,
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
@ -854,7 +855,16 @@ class Cosmos(supported_models_base.BASE):
|
||||
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.cosmos.CosmosT5Tokenizer, comfy.text_encoders.cosmos.te(**t5_detect))
|
||||
|
||||
class CosmosI2V(CosmosT2V):
|
||||
unet_config = {
|
||||
"image_model": "cosmos",
|
||||
"in_channels": 17,
|
||||
}
|
||||
|
||||
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo, Cosmos]
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.CosmosVideo(self, image_to_video=True, device=device)
|
||||
return out
|
||||
|
||||
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo, CosmosT2V, CosmosI2V]
|
||||
|
||||
models += [SVD_img2vid]
|
||||
|
@ -29,17 +29,29 @@ import itertools
|
||||
from torch.nn.functional import interpolate
|
||||
from einops import rearrange
|
||||
|
||||
ALWAYS_SAFE_LOAD = False
|
||||
if hasattr(torch.serialization, "add_safe_globals"): # TODO: this was added in pytorch 2.4, the unsafe path should be removed once earlier versions are deprecated
|
||||
class ModelCheckpoint:
|
||||
pass
|
||||
ModelCheckpoint.__module__ = "pytorch_lightning.callbacks.model_checkpoint"
|
||||
|
||||
from numpy.core.multiarray import scalar
|
||||
from numpy import dtype
|
||||
from numpy.dtypes import Float64DType
|
||||
from _codecs import encode
|
||||
|
||||
torch.serialization.add_safe_globals([ModelCheckpoint, scalar, dtype, Float64DType, encode])
|
||||
ALWAYS_SAFE_LOAD = True
|
||||
logging.info("Checkpoint files will always be loaded safely.")
|
||||
|
||||
|
||||
def load_torch_file(ckpt, safe_load=False, device=None):
|
||||
if device is None:
|
||||
device = torch.device("cpu")
|
||||
if ckpt.lower().endswith(".safetensors") or ckpt.lower().endswith(".sft"):
|
||||
sd = safetensors.torch.load_file(ckpt, device=device.type)
|
||||
else:
|
||||
if safe_load:
|
||||
if not 'weights_only' in torch.load.__code__.co_varnames:
|
||||
logging.warning("Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely.")
|
||||
safe_load = False
|
||||
if safe_load:
|
||||
if safe_load or ALWAYS_SAFE_LOAD:
|
||||
pl_sd = torch.load(ckpt, map_location=device, weights_only=True)
|
||||
else:
|
||||
pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle)
|
||||
|
@ -1,6 +1,8 @@
|
||||
import nodes
|
||||
import torch
|
||||
import comfy.model_management
|
||||
import comfy.utils
|
||||
|
||||
|
||||
class EmptyCosmosLatentVideo:
|
||||
@classmethod
|
||||
@ -16,8 +18,65 @@ class EmptyCosmosLatentVideo:
|
||||
|
||||
def generate(self, width, height, length, batch_size=1):
|
||||
latent = torch.zeros([batch_size, 16, ((length - 1) // 8) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
|
||||
return ({"samples":latent}, )
|
||||
return ({"samples": latent}, )
|
||||
|
||||
|
||||
def vae_encode_with_padding(vae, image, width, height, length, padding=0):
|
||||
pixels = comfy.utils.common_upscale(image[..., :3].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
|
||||
pixel_len = min(pixels.shape[0], length)
|
||||
padded_length = min(length, (((pixel_len - 1) // 8) + 1 + padding) * 8 - 7)
|
||||
padded_pixels = torch.ones((padded_length, height, width, 3)) * 0.5
|
||||
padded_pixels[:pixel_len] = pixels[:pixel_len]
|
||||
latent_len = ((pixel_len - 1) // 8) + 1
|
||||
latent_temp = vae.encode(padded_pixels)
|
||||
return latent_temp[:, :, :latent_len]
|
||||
|
||||
|
||||
class CosmosImageToVideoLatent:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"vae": ("VAE", ),
|
||||
"width": ("INT", {"default": 1280, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
|
||||
"height": ("INT", {"default": 704, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
|
||||
"length": ("INT", {"default": 121, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
||||
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
||||
},
|
||||
"optional": {"start_image": ("IMAGE", ),
|
||||
"end_image": ("IMAGE", ),
|
||||
}}
|
||||
|
||||
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "encode"
|
||||
|
||||
CATEGORY = "conditioning/inpaint"
|
||||
|
||||
def encode(self, vae, width, height, length, batch_size, start_image=None, end_image=None):
|
||||
latent = torch.zeros([1, 16, ((length - 1) // 8) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
|
||||
if start_image is None and end_image is None:
|
||||
out_latent = {}
|
||||
out_latent["samples"] = latent
|
||||
return (out_latent,)
|
||||
|
||||
mask = torch.ones([latent.shape[0], 1, ((length - 1) // 8) + 1, latent.shape[-2], latent.shape[-1]], device=comfy.model_management.intermediate_device())
|
||||
|
||||
if start_image is not None:
|
||||
latent_temp = vae_encode_with_padding(vae, start_image, width, height, length, padding=1)
|
||||
latent[:, :, :latent_temp.shape[-3]] = latent_temp
|
||||
mask[:, :, :latent_temp.shape[-3]] *= 0.0
|
||||
|
||||
if end_image is not None:
|
||||
latent_temp = vae_encode_with_padding(vae, end_image, width, height, length, padding=0)
|
||||
latent[:, :, -latent_temp.shape[-3]:] = latent_temp
|
||||
mask[:, :, -latent_temp.shape[-3]:] *= 0.0
|
||||
|
||||
out_latent = {}
|
||||
out_latent["samples"] = latent.repeat((batch_size, ) + (1,) * (latent.ndim - 1))
|
||||
out_latent["noise_mask"] = mask.repeat((batch_size, ) + (1,) * (mask.ndim - 1))
|
||||
return (out_latent,)
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"EmptyCosmosLatentVideo": EmptyCosmosLatentVideo,
|
||||
"CosmosImageToVideoLatent": CosmosImageToVideoLatent,
|
||||
}
|
||||
|
@ -231,6 +231,24 @@ class FlipSigmas:
|
||||
sigmas[0] = 0.0001
|
||||
return (sigmas,)
|
||||
|
||||
class SetFirstSigma:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required":
|
||||
{"sigmas": ("SIGMAS", ),
|
||||
"sigma": ("FLOAT", {"default": 136.0, "min": 0.0, "max": 20000.0, "step": 0.001, "round": False}),
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("SIGMAS",)
|
||||
CATEGORY = "sampling/custom_sampling/sigmas"
|
||||
|
||||
FUNCTION = "set_first_sigma"
|
||||
|
||||
def set_first_sigma(self, sigmas, sigma):
|
||||
sigmas = sigmas.clone()
|
||||
sigmas[0] = sigma
|
||||
return (sigmas, )
|
||||
|
||||
class KSamplerSelect:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
@ -710,6 +728,7 @@ NODE_CLASS_MAPPINGS = {
|
||||
"SplitSigmas": SplitSigmas,
|
||||
"SplitSigmasDenoise": SplitSigmasDenoise,
|
||||
"FlipSigmas": FlipSigmas,
|
||||
"SetFirstSigma": SetFirstSigma,
|
||||
|
||||
"CFGGuider": CFGGuider,
|
||||
"DualCFGGuider": DualCFGGuider,
|
||||
|
@ -2,6 +2,7 @@ torch
|
||||
torchsde
|
||||
torchvision
|
||||
torchaudio
|
||||
numpy>=1.25.0
|
||||
einops
|
||||
transformers>=4.28.1
|
||||
tokenizers>=0.13.3
|
||||
|
Loading…
Reference in New Issue
Block a user