mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-03-13 22:31:08 +00:00
Merge remote-tracking branch 'origin/master' into frontendrefactor
This commit is contained in:
commit
1ee35fd909
@ -135,7 +135,7 @@ You can also set this command line setting to disable the upcasting to fp32 in s
|
||||
|
||||
## Support and dev channel
|
||||
|
||||
[Matrix room: #comfyui:matrix.org](https://app.element.io/#/room/%23comfyui%3Amatrix.org) (it's like discord but open source).
|
||||
[Matrix space: #comfyui_space:matrix.org](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) (it's like discord but open source).
|
||||
|
||||
# QA
|
||||
|
||||
|
@ -489,6 +489,8 @@ if XFORMERS_IS_AVAILBLE == False or "--disable-xformers" in sys.argv:
|
||||
if "--use-pytorch-cross-attention" in sys.argv:
|
||||
print("Using pytorch cross attention")
|
||||
torch.backends.cuda.enable_math_sdp(False)
|
||||
torch.backends.cuda.enable_flash_sdp(True)
|
||||
torch.backends.cuda.enable_mem_efficient_sdp(True)
|
||||
CrossAttention = CrossAttentionPytorch
|
||||
else:
|
||||
print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
|
||||
@ -497,6 +499,7 @@ else:
|
||||
print("Using xformers cross attention")
|
||||
CrossAttention = MemoryEfficientCrossAttention
|
||||
|
||||
|
||||
class BasicTransformerBlock(nn.Module):
|
||||
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
|
||||
disable_self_attn=False):
|
||||
|
@ -7,6 +7,7 @@ from einops import rearrange
|
||||
from typing import Optional, Any
|
||||
|
||||
from ldm.modules.attention import MemoryEfficientCrossAttention
|
||||
import model_management
|
||||
|
||||
try:
|
||||
import xformers
|
||||
@ -199,12 +200,7 @@ class AttnBlock(nn.Module):
|
||||
|
||||
r1 = torch.zeros_like(k, device=q.device)
|
||||
|
||||
stats = torch.cuda.memory_stats(q.device)
|
||||
mem_active = stats['active_bytes.all.current']
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
|
||||
mem_free_torch = mem_reserved - mem_active
|
||||
mem_free_total = mem_free_cuda + mem_free_torch
|
||||
mem_free_total = model_management.get_free_memory(q.device)
|
||||
|
||||
gb = 1024 ** 3
|
||||
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
|
||||
|
13
comfy/sd.py
13
comfy/sd.py
@ -612,8 +612,17 @@ class T2IAdapter:
|
||||
|
||||
def load_t2i_adapter(ckpt_path, model=None):
|
||||
t2i_data = load_torch_file(ckpt_path)
|
||||
cin = t2i_data['conv_in.weight'].shape[1]
|
||||
model_ad = adapter.Adapter(cin=cin, channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False)
|
||||
keys = t2i_data.keys()
|
||||
if "style_embedding" in keys:
|
||||
pass
|
||||
# TODO
|
||||
# model_ad = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
|
||||
elif "body.0.in_conv.weight" in keys:
|
||||
cin = t2i_data['body.0.in_conv.weight'].shape[1]
|
||||
model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
|
||||
else:
|
||||
cin = t2i_data['conv_in.weight'].shape[1]
|
||||
model_ad = adapter.Adapter(cin=cin, channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False)
|
||||
model_ad.load_state_dict(t2i_data)
|
||||
return T2IAdapter(model_ad, cin // 64)
|
||||
|
||||
|
@ -1,9 +1,8 @@
|
||||
#taken from https://github.com/TencentARC/T2I-Adapter
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from ldm.modules.attention import SpatialTransformer, BasicTransformerBlock
|
||||
from collections import OrderedDict
|
||||
|
||||
|
||||
def conv_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
@ -17,6 +16,7 @@ def conv_nd(dims, *args, **kwargs):
|
||||
return nn.Conv3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
def avg_pool_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D average pooling module.
|
||||
@ -29,6 +29,7 @@ def avg_pool_nd(dims, *args, **kwargs):
|
||||
return nn.AvgPool3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
"""
|
||||
A downsampling layer with an optional convolution.
|
||||
@ -38,7 +39,7 @@ class Downsample(nn.Module):
|
||||
downsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
@ -61,8 +62,8 @@ class Downsample(nn.Module):
|
||||
class ResnetBlock(nn.Module):
|
||||
def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True):
|
||||
super().__init__()
|
||||
ps = ksize//2
|
||||
if in_c != out_c or sk==False:
|
||||
ps = ksize // 2
|
||||
if in_c != out_c or sk == False:
|
||||
self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps)
|
||||
else:
|
||||
# print('n_in')
|
||||
@ -70,7 +71,7 @@ class ResnetBlock(nn.Module):
|
||||
self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1)
|
||||
self.act = nn.ReLU()
|
||||
self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps)
|
||||
if sk==False:
|
||||
if sk == False:
|
||||
self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps)
|
||||
else:
|
||||
self.skep = None
|
||||
@ -82,7 +83,7 @@ class ResnetBlock(nn.Module):
|
||||
def forward(self, x):
|
||||
if self.down == True:
|
||||
x = self.down_opt(x)
|
||||
if self.in_conv is not None: # edit
|
||||
if self.in_conv is not None: # edit
|
||||
x = self.in_conv(x)
|
||||
|
||||
h = self.block1(x)
|
||||
@ -103,12 +104,14 @@ class Adapter(nn.Module):
|
||||
self.body = []
|
||||
for i in range(len(channels)):
|
||||
for j in range(nums_rb):
|
||||
if (i!=0) and (j==0):
|
||||
self.body.append(ResnetBlock(channels[i-1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv))
|
||||
if (i != 0) and (j == 0):
|
||||
self.body.append(
|
||||
ResnetBlock(channels[i - 1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv))
|
||||
else:
|
||||
self.body.append(ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
|
||||
self.body.append(
|
||||
ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
|
||||
self.body = nn.ModuleList(self.body)
|
||||
self.conv_in = nn.Conv2d(cin,channels[0], 3, 1, 1)
|
||||
self.conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1)
|
||||
|
||||
def forward(self, x):
|
||||
# unshuffle
|
||||
@ -118,8 +121,139 @@ class Adapter(nn.Module):
|
||||
x = self.conv_in(x)
|
||||
for i in range(len(self.channels)):
|
||||
for j in range(self.nums_rb):
|
||||
idx = i*self.nums_rb +j
|
||||
idx = i * self.nums_rb + j
|
||||
x = self.body[idx](x)
|
||||
features.append(x)
|
||||
|
||||
return features
|
||||
|
||||
|
||||
class LayerNorm(nn.LayerNorm):
|
||||
"""Subclass torch's LayerNorm to handle fp16."""
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
orig_type = x.dtype
|
||||
ret = super().forward(x.type(torch.float32))
|
||||
return ret.type(orig_type)
|
||||
|
||||
|
||||
class QuickGELU(nn.Module):
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
return x * torch.sigmoid(1.702 * x)
|
||||
|
||||
|
||||
class ResidualAttentionBlock(nn.Module):
|
||||
|
||||
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
||||
super().__init__()
|
||||
|
||||
self.attn = nn.MultiheadAttention(d_model, n_head)
|
||||
self.ln_1 = LayerNorm(d_model)
|
||||
self.mlp = nn.Sequential(
|
||||
OrderedDict([("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()),
|
||||
("c_proj", nn.Linear(d_model * 4, d_model))]))
|
||||
self.ln_2 = LayerNorm(d_model)
|
||||
self.attn_mask = attn_mask
|
||||
|
||||
def attention(self, x: torch.Tensor):
|
||||
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
||||
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = x + self.attention(self.ln_1(x))
|
||||
x = x + self.mlp(self.ln_2(x))
|
||||
return x
|
||||
|
||||
|
||||
class StyleAdapter(nn.Module):
|
||||
|
||||
def __init__(self, width=1024, context_dim=768, num_head=8, n_layes=3, num_token=4):
|
||||
super().__init__()
|
||||
|
||||
scale = width ** -0.5
|
||||
self.transformer_layes = nn.Sequential(*[ResidualAttentionBlock(width, num_head) for _ in range(n_layes)])
|
||||
self.num_token = num_token
|
||||
self.style_embedding = nn.Parameter(torch.randn(1, num_token, width) * scale)
|
||||
self.ln_post = LayerNorm(width)
|
||||
self.ln_pre = LayerNorm(width)
|
||||
self.proj = nn.Parameter(scale * torch.randn(width, context_dim))
|
||||
|
||||
def forward(self, x):
|
||||
# x shape [N, HW+1, C]
|
||||
style_embedding = self.style_embedding + torch.zeros(
|
||||
(x.shape[0], self.num_token, self.style_embedding.shape[-1]), device=x.device)
|
||||
x = torch.cat([x, style_embedding], dim=1)
|
||||
x = self.ln_pre(x)
|
||||
x = x.permute(1, 0, 2) # NLD -> LND
|
||||
x = self.transformer_layes(x)
|
||||
x = x.permute(1, 0, 2) # LND -> NLD
|
||||
|
||||
x = self.ln_post(x[:, -self.num_token:, :])
|
||||
x = x @ self.proj
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class ResnetBlock_light(nn.Module):
|
||||
def __init__(self, in_c):
|
||||
super().__init__()
|
||||
self.block1 = nn.Conv2d(in_c, in_c, 3, 1, 1)
|
||||
self.act = nn.ReLU()
|
||||
self.block2 = nn.Conv2d(in_c, in_c, 3, 1, 1)
|
||||
|
||||
def forward(self, x):
|
||||
h = self.block1(x)
|
||||
h = self.act(h)
|
||||
h = self.block2(h)
|
||||
|
||||
return h + x
|
||||
|
||||
|
||||
class extractor(nn.Module):
|
||||
def __init__(self, in_c, inter_c, out_c, nums_rb, down=False):
|
||||
super().__init__()
|
||||
self.in_conv = nn.Conv2d(in_c, inter_c, 1, 1, 0)
|
||||
self.body = []
|
||||
for _ in range(nums_rb):
|
||||
self.body.append(ResnetBlock_light(inter_c))
|
||||
self.body = nn.Sequential(*self.body)
|
||||
self.out_conv = nn.Conv2d(inter_c, out_c, 1, 1, 0)
|
||||
self.down = down
|
||||
if self.down == True:
|
||||
self.down_opt = Downsample(in_c, use_conv=False)
|
||||
|
||||
def forward(self, x):
|
||||
if self.down == True:
|
||||
x = self.down_opt(x)
|
||||
x = self.in_conv(x)
|
||||
x = self.body(x)
|
||||
x = self.out_conv(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Adapter_light(nn.Module):
|
||||
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64):
|
||||
super(Adapter_light, self).__init__()
|
||||
self.unshuffle = nn.PixelUnshuffle(8)
|
||||
self.channels = channels
|
||||
self.nums_rb = nums_rb
|
||||
self.body = []
|
||||
for i in range(len(channels)):
|
||||
if i == 0:
|
||||
self.body.append(extractor(in_c=cin, inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=False))
|
||||
else:
|
||||
self.body.append(extractor(in_c=channels[i-1], inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=True))
|
||||
self.body = nn.ModuleList(self.body)
|
||||
|
||||
def forward(self, x):
|
||||
# unshuffle
|
||||
x = self.unshuffle(x)
|
||||
# extract features
|
||||
features = []
|
||||
for i in range(len(self.channels)):
|
||||
x = self.body[i](x)
|
||||
features.append(x)
|
||||
|
||||
return features
|
||||
|
@ -42,7 +42,7 @@
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"Download some models/checkpoints/vae (uncomment the wget commands for the ones you want)"
|
||||
"Download some models/checkpoints/vae or custom comfyui nodes (uncomment the commands for the ones you want)"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "cccccccccc"
|
||||
@ -54,43 +54,52 @@
|
||||
"# Checkpoints\n",
|
||||
"\n",
|
||||
"# SD1.5\n",
|
||||
"!wget https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt -P ./models/checkpoints/\n",
|
||||
"!wget -c https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt -P ./models/checkpoints/\n",
|
||||
"\n",
|
||||
"# SD2\n",
|
||||
"#!wget https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.safetensors -P ./models/checkpoints/\n",
|
||||
"#!wget https://huggingface.co/stabilityai/stable-diffusion-2-1/resolve/main/v2-1_768-ema-pruned.safetensors -P ./models/checkpoints/\n",
|
||||
"#!wget -c https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.safetensors -P ./models/checkpoints/\n",
|
||||
"#!wget -c https://huggingface.co/stabilityai/stable-diffusion-2-1/resolve/main/v2-1_768-ema-pruned.safetensors -P ./models/checkpoints/\n",
|
||||
"\n",
|
||||
"# Some SD1.5 anime style\n",
|
||||
"#!wget https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/Models/AbyssOrangeMix2/AbyssOrangeMix2_hard.safetensors -P ./models/checkpoints/\n",
|
||||
"#!wget https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/Models/AbyssOrangeMix3/AOM3A1.safetensors -P ./models/checkpoints/\n",
|
||||
"#!wget https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/Models/AbyssOrangeMix3/AOM3A3.safetensors -P ./models/checkpoints/\n",
|
||||
"#!wget https://huggingface.co/Linaqruf/anything-v3.0/resolve/main/anything-v3-fp16-pruned.safetensors -P ./models/checkpoints/\n",
|
||||
"#!wget -c https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/Models/AbyssOrangeMix2/AbyssOrangeMix2_hard.safetensors -P ./models/checkpoints/\n",
|
||||
"#!wget -c https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/Models/AbyssOrangeMix3/AOM3A1.safetensors -P ./models/checkpoints/\n",
|
||||
"#!wget -c https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/Models/AbyssOrangeMix3/AOM3A3.safetensors -P ./models/checkpoints/\n",
|
||||
"#!wget -c https://huggingface.co/Linaqruf/anything-v3.0/resolve/main/anything-v3-fp16-pruned.safetensors -P ./models/checkpoints/\n",
|
||||
"\n",
|
||||
"# Waifu Diffusion 1.5 (anime style SD2.x 768-v)\n",
|
||||
"#!wget https://huggingface.co/waifu-diffusion/wd-1-5-beta2/resolve/main/checkpoints/wd-1-5-beta2-fp16.safetensors -P ./models/checkpoints/\n",
|
||||
"#!wget -c https://huggingface.co/waifu-diffusion/wd-1-5-beta2/resolve/main/checkpoints/wd-1-5-beta2-fp16.safetensors -P ./models/checkpoints/\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# VAE\n",
|
||||
"!wget https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.safetensors -P ./models/vae/\n",
|
||||
"#!wget https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/VAEs/orangemix.vae.pt -P ./models/vae/\n",
|
||||
"!wget -c https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.safetensors -P ./models/vae/\n",
|
||||
"#!wget -c https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/VAEs/orangemix.vae.pt -P ./models/vae/\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Loras\n",
|
||||
"#!wget --content-disposition https://civitai.com/api/download/models/10350 -P ./models/loras/ #theovercomer8sContrastFix SD2.x 768-v\n",
|
||||
"#!wget --content-disposition https://civitai.com/api/download/models/10638 -P ./models/loras/ #theovercomer8sContrastFix SD1.x\n",
|
||||
"#!wget -c --content-disposition https://civitai.com/api/download/models/10350 -P ./models/loras/ #theovercomer8sContrastFix SD2.x 768-v\n",
|
||||
"#!wget -c --content-disposition https://civitai.com/api/download/models/10638 -P ./models/loras/ #theovercomer8sContrastFix SD1.x\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# T2I-Adapter\n",
|
||||
"#!wget https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_depth_sd14v1.pth -P ./models/t2i_adapter/\n",
|
||||
"#!wget https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_seg_sd14v1.pth -P ./models/t2i_adapter/\n",
|
||||
"#!wget https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_sketch_sd14v1.pth -P ./models/t2i_adapter/\n",
|
||||
"#!wget https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_keypose_sd14v1.pth -P ./models/t2i_adapter/\n",
|
||||
"#!wget -c https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_depth_sd14v1.pth -P ./models/t2i_adapter/\n",
|
||||
"#!wget -c https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_seg_sd14v1.pth -P ./models/t2i_adapter/\n",
|
||||
"#!wget -c https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_sketch_sd14v1.pth -P ./models/t2i_adapter/\n",
|
||||
"#!wget -c https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_keypose_sd14v1.pth -P ./models/t2i_adapter/\n",
|
||||
"#!wget -c https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_openpose_sd14v1.pth -P ./models/t2i_adapter/\n",
|
||||
"#!wget -c https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_color_sd14v1.pth -P ./models/t2i_adapter/\n",
|
||||
"#!wget -c https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_canny_sd14v1.pth -P ./models/t2i_adapter/\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# ControlNet\n",
|
||||
"#!wget https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/control_depth-fp16.safetensors -P ./models/controlnet/\n",
|
||||
"#!wget https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/control_scribble-fp16.safetensors -P ./models/controlnet/\n",
|
||||
"#!wget https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/control_openpose-fp16.safetensors -P ./models/controlnet/\n"
|
||||
"#!wget -c https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/control_depth-fp16.safetensors -P ./models/controlnet/\n",
|
||||
"#!wget -c https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/control_scribble-fp16.safetensors -P ./models/controlnet/\n",
|
||||
"#!wget -c https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/control_openpose-fp16.safetensors -P ./models/controlnet/\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Controlnet Preprocessor nodes by Fannovel16\n",
|
||||
"#!cd custom_nodes && git clone https://github.com/Fannovel16/comfy_controlnet_preprocessors; cd comfy_controlnet_preprocessors && python install.py\n",
|
||||
"\n"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "dddddddddd"
|
||||
@ -101,7 +110,7 @@
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### Run ComfyUI with localtunnel\n",
|
||||
"### Run ComfyUI with localtunnel (Recommended Way)\n",
|
||||
"\n",
|
||||
"use the **fp16** model configs for more speed\n",
|
||||
"\n"
|
||||
@ -146,7 +155,7 @@
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### Run ComfyUI with colab iframe (in case localtunnel doesn't work)\n",
|
||||
"### Run ComfyUI with colab iframe (use only in case the previous way with localtunnel doesn't work)\n",
|
||||
"use the **fp16** model configs for more speed\n",
|
||||
"\n",
|
||||
"You should see the ui appear in an iframe. If you get a 403 error, it's your firefox settings or an extension that's messing things up.\n",
|
||||
|
@ -37,10 +37,9 @@ prompt_text = """
|
||||
}
|
||||
},
|
||||
"4": {
|
||||
"class_type": "CheckpointLoader",
|
||||
"class_type": "CheckpointLoaderSimple",
|
||||
"inputs": {
|
||||
"ckpt_name": "v1-5-pruned-emaonly.ckpt",
|
||||
"config_name": "v1-inference.yaml"
|
||||
"ckpt_name": "v1-5-pruned-emaonly.ckpt"
|
||||
}
|
||||
},
|
||||
"5": {
|
||||
|
@ -86,9 +86,9 @@ export const defaultGraph = {
|
||||
},
|
||||
{
|
||||
id: 4,
|
||||
type: "CheckpointLoader",
|
||||
type: "CheckpointLoaderSimple",
|
||||
pos: [26, 474],
|
||||
size: { 0: 315, 1: 122 },
|
||||
size: { 0: 315, 1: 98 },
|
||||
flags: {},
|
||||
order: 0,
|
||||
mode: 0,
|
||||
@ -98,7 +98,7 @@ export const defaultGraph = {
|
||||
{ name: "VAE", type: "VAE", links: [8], slot_index: 2 },
|
||||
],
|
||||
properties: {},
|
||||
widgets_values: ["v1-inference.yaml", "v1-5-pruned-emaonly.ckpt"],
|
||||
widgets_values: ["v1-5-pruned-emaonly.ckpt"],
|
||||
},
|
||||
],
|
||||
links: [
|
||||
|
Loading…
Reference in New Issue
Block a user