Merge remote-tracking branch 'origin/master' into frontendrefactor

This commit is contained in:
pythongosssss 2023-03-05 21:55:16 +00:00
commit 1ee35fd909
8 changed files with 200 additions and 50 deletions

View File

@ -135,7 +135,7 @@ You can also set this command line setting to disable the upcasting to fp32 in s
## Support and dev channel
[Matrix room: #comfyui:matrix.org](https://app.element.io/#/room/%23comfyui%3Amatrix.org) (it's like discord but open source).
[Matrix space: #comfyui_space:matrix.org](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) (it's like discord but open source).
# QA

View File

@ -489,6 +489,8 @@ if XFORMERS_IS_AVAILBLE == False or "--disable-xformers" in sys.argv:
if "--use-pytorch-cross-attention" in sys.argv:
print("Using pytorch cross attention")
torch.backends.cuda.enable_math_sdp(False)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_mem_efficient_sdp(True)
CrossAttention = CrossAttentionPytorch
else:
print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
@ -497,6 +499,7 @@ else:
print("Using xformers cross attention")
CrossAttention = MemoryEfficientCrossAttention
class BasicTransformerBlock(nn.Module):
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
disable_self_attn=False):

View File

@ -7,6 +7,7 @@ from einops import rearrange
from typing import Optional, Any
from ldm.modules.attention import MemoryEfficientCrossAttention
import model_management
try:
import xformers
@ -199,12 +200,7 @@ class AttnBlock(nn.Module):
r1 = torch.zeros_like(k, device=q.device)
stats = torch.cuda.memory_stats(q.device)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
mem_free_total = model_management.get_free_memory(q.device)
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()

View File

@ -612,8 +612,17 @@ class T2IAdapter:
def load_t2i_adapter(ckpt_path, model=None):
t2i_data = load_torch_file(ckpt_path)
cin = t2i_data['conv_in.weight'].shape[1]
model_ad = adapter.Adapter(cin=cin, channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False)
keys = t2i_data.keys()
if "style_embedding" in keys:
pass
# TODO
# model_ad = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
elif "body.0.in_conv.weight" in keys:
cin = t2i_data['body.0.in_conv.weight'].shape[1]
model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
else:
cin = t2i_data['conv_in.weight'].shape[1]
model_ad = adapter.Adapter(cin=cin, channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False)
model_ad.load_state_dict(t2i_data)
return T2IAdapter(model_ad, cin // 64)

View File

@ -1,9 +1,8 @@
#taken from https://github.com/TencentARC/T2I-Adapter
import torch
import torch.nn as nn
import torch.nn.functional as F
from ldm.modules.attention import SpatialTransformer, BasicTransformerBlock
from collections import OrderedDict
def conv_nd(dims, *args, **kwargs):
"""
@ -17,6 +16,7 @@ def conv_nd(dims, *args, **kwargs):
return nn.Conv3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def avg_pool_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D average pooling module.
@ -29,6 +29,7 @@ def avg_pool_nd(dims, *args, **kwargs):
return nn.AvgPool3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
@ -38,7 +39,7 @@ class Downsample(nn.Module):
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
@ -61,8 +62,8 @@ class Downsample(nn.Module):
class ResnetBlock(nn.Module):
def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True):
super().__init__()
ps = ksize//2
if in_c != out_c or sk==False:
ps = ksize // 2
if in_c != out_c or sk == False:
self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps)
else:
# print('n_in')
@ -70,7 +71,7 @@ class ResnetBlock(nn.Module):
self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1)
self.act = nn.ReLU()
self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps)
if sk==False:
if sk == False:
self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps)
else:
self.skep = None
@ -82,7 +83,7 @@ class ResnetBlock(nn.Module):
def forward(self, x):
if self.down == True:
x = self.down_opt(x)
if self.in_conv is not None: # edit
if self.in_conv is not None: # edit
x = self.in_conv(x)
h = self.block1(x)
@ -103,12 +104,14 @@ class Adapter(nn.Module):
self.body = []
for i in range(len(channels)):
for j in range(nums_rb):
if (i!=0) and (j==0):
self.body.append(ResnetBlock(channels[i-1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv))
if (i != 0) and (j == 0):
self.body.append(
ResnetBlock(channels[i - 1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv))
else:
self.body.append(ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
self.body.append(
ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
self.body = nn.ModuleList(self.body)
self.conv_in = nn.Conv2d(cin,channels[0], 3, 1, 1)
self.conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1)
def forward(self, x):
# unshuffle
@ -118,8 +121,139 @@ class Adapter(nn.Module):
x = self.conv_in(x)
for i in range(len(self.channels)):
for j in range(self.nums_rb):
idx = i*self.nums_rb +j
idx = i * self.nums_rb + j
x = self.body[idx](x)
features.append(x)
return features
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(
OrderedDict([("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x: torch.Tensor):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor):
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class StyleAdapter(nn.Module):
def __init__(self, width=1024, context_dim=768, num_head=8, n_layes=3, num_token=4):
super().__init__()
scale = width ** -0.5
self.transformer_layes = nn.Sequential(*[ResidualAttentionBlock(width, num_head) for _ in range(n_layes)])
self.num_token = num_token
self.style_embedding = nn.Parameter(torch.randn(1, num_token, width) * scale)
self.ln_post = LayerNorm(width)
self.ln_pre = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, context_dim))
def forward(self, x):
# x shape [N, HW+1, C]
style_embedding = self.style_embedding + torch.zeros(
(x.shape[0], self.num_token, self.style_embedding.shape[-1]), device=x.device)
x = torch.cat([x, style_embedding], dim=1)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer_layes(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_post(x[:, -self.num_token:, :])
x = x @ self.proj
return x
class ResnetBlock_light(nn.Module):
def __init__(self, in_c):
super().__init__()
self.block1 = nn.Conv2d(in_c, in_c, 3, 1, 1)
self.act = nn.ReLU()
self.block2 = nn.Conv2d(in_c, in_c, 3, 1, 1)
def forward(self, x):
h = self.block1(x)
h = self.act(h)
h = self.block2(h)
return h + x
class extractor(nn.Module):
def __init__(self, in_c, inter_c, out_c, nums_rb, down=False):
super().__init__()
self.in_conv = nn.Conv2d(in_c, inter_c, 1, 1, 0)
self.body = []
for _ in range(nums_rb):
self.body.append(ResnetBlock_light(inter_c))
self.body = nn.Sequential(*self.body)
self.out_conv = nn.Conv2d(inter_c, out_c, 1, 1, 0)
self.down = down
if self.down == True:
self.down_opt = Downsample(in_c, use_conv=False)
def forward(self, x):
if self.down == True:
x = self.down_opt(x)
x = self.in_conv(x)
x = self.body(x)
x = self.out_conv(x)
return x
class Adapter_light(nn.Module):
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64):
super(Adapter_light, self).__init__()
self.unshuffle = nn.PixelUnshuffle(8)
self.channels = channels
self.nums_rb = nums_rb
self.body = []
for i in range(len(channels)):
if i == 0:
self.body.append(extractor(in_c=cin, inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=False))
else:
self.body.append(extractor(in_c=channels[i-1], inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=True))
self.body = nn.ModuleList(self.body)
def forward(self, x):
# unshuffle
x = self.unshuffle(x)
# extract features
features = []
for i in range(len(self.channels)):
x = self.body[i](x)
features.append(x)
return features

View File

@ -42,7 +42,7 @@
{
"cell_type": "markdown",
"source": [
"Download some models/checkpoints/vae (uncomment the wget commands for the ones you want)"
"Download some models/checkpoints/vae or custom comfyui nodes (uncomment the commands for the ones you want)"
],
"metadata": {
"id": "cccccccccc"
@ -54,43 +54,52 @@
"# Checkpoints\n",
"\n",
"# SD1.5\n",
"!wget https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt -P ./models/checkpoints/\n",
"!wget -c https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt -P ./models/checkpoints/\n",
"\n",
"# SD2\n",
"#!wget https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.safetensors -P ./models/checkpoints/\n",
"#!wget https://huggingface.co/stabilityai/stable-diffusion-2-1/resolve/main/v2-1_768-ema-pruned.safetensors -P ./models/checkpoints/\n",
"#!wget -c https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.safetensors -P ./models/checkpoints/\n",
"#!wget -c https://huggingface.co/stabilityai/stable-diffusion-2-1/resolve/main/v2-1_768-ema-pruned.safetensors -P ./models/checkpoints/\n",
"\n",
"# Some SD1.5 anime style\n",
"#!wget https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/Models/AbyssOrangeMix2/AbyssOrangeMix2_hard.safetensors -P ./models/checkpoints/\n",
"#!wget https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/Models/AbyssOrangeMix3/AOM3A1.safetensors -P ./models/checkpoints/\n",
"#!wget https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/Models/AbyssOrangeMix3/AOM3A3.safetensors -P ./models/checkpoints/\n",
"#!wget https://huggingface.co/Linaqruf/anything-v3.0/resolve/main/anything-v3-fp16-pruned.safetensors -P ./models/checkpoints/\n",
"#!wget -c https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/Models/AbyssOrangeMix2/AbyssOrangeMix2_hard.safetensors -P ./models/checkpoints/\n",
"#!wget -c https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/Models/AbyssOrangeMix3/AOM3A1.safetensors -P ./models/checkpoints/\n",
"#!wget -c https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/Models/AbyssOrangeMix3/AOM3A3.safetensors -P ./models/checkpoints/\n",
"#!wget -c https://huggingface.co/Linaqruf/anything-v3.0/resolve/main/anything-v3-fp16-pruned.safetensors -P ./models/checkpoints/\n",
"\n",
"# Waifu Diffusion 1.5 (anime style SD2.x 768-v)\n",
"#!wget https://huggingface.co/waifu-diffusion/wd-1-5-beta2/resolve/main/checkpoints/wd-1-5-beta2-fp16.safetensors -P ./models/checkpoints/\n",
"#!wget -c https://huggingface.co/waifu-diffusion/wd-1-5-beta2/resolve/main/checkpoints/wd-1-5-beta2-fp16.safetensors -P ./models/checkpoints/\n",
"\n",
"\n",
"# VAE\n",
"!wget https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.safetensors -P ./models/vae/\n",
"#!wget https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/VAEs/orangemix.vae.pt -P ./models/vae/\n",
"!wget -c https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.safetensors -P ./models/vae/\n",
"#!wget -c https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/VAEs/orangemix.vae.pt -P ./models/vae/\n",
"\n",
"\n",
"# Loras\n",
"#!wget --content-disposition https://civitai.com/api/download/models/10350 -P ./models/loras/ #theovercomer8sContrastFix SD2.x 768-v\n",
"#!wget --content-disposition https://civitai.com/api/download/models/10638 -P ./models/loras/ #theovercomer8sContrastFix SD1.x\n",
"#!wget -c --content-disposition https://civitai.com/api/download/models/10350 -P ./models/loras/ #theovercomer8sContrastFix SD2.x 768-v\n",
"#!wget -c --content-disposition https://civitai.com/api/download/models/10638 -P ./models/loras/ #theovercomer8sContrastFix SD1.x\n",
"\n",
"\n",
"# T2I-Adapter\n",
"#!wget https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_depth_sd14v1.pth -P ./models/t2i_adapter/\n",
"#!wget https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_seg_sd14v1.pth -P ./models/t2i_adapter/\n",
"#!wget https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_sketch_sd14v1.pth -P ./models/t2i_adapter/\n",
"#!wget https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_keypose_sd14v1.pth -P ./models/t2i_adapter/\n",
"#!wget -c https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_depth_sd14v1.pth -P ./models/t2i_adapter/\n",
"#!wget -c https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_seg_sd14v1.pth -P ./models/t2i_adapter/\n",
"#!wget -c https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_sketch_sd14v1.pth -P ./models/t2i_adapter/\n",
"#!wget -c https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_keypose_sd14v1.pth -P ./models/t2i_adapter/\n",
"#!wget -c https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_openpose_sd14v1.pth -P ./models/t2i_adapter/\n",
"#!wget -c https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_color_sd14v1.pth -P ./models/t2i_adapter/\n",
"#!wget -c https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_canny_sd14v1.pth -P ./models/t2i_adapter/\n",
"\n",
"\n",
"\n",
"# ControlNet\n",
"#!wget https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/control_depth-fp16.safetensors -P ./models/controlnet/\n",
"#!wget https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/control_scribble-fp16.safetensors -P ./models/controlnet/\n",
"#!wget https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/control_openpose-fp16.safetensors -P ./models/controlnet/\n"
"#!wget -c https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/control_depth-fp16.safetensors -P ./models/controlnet/\n",
"#!wget -c https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/control_scribble-fp16.safetensors -P ./models/controlnet/\n",
"#!wget -c https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/control_openpose-fp16.safetensors -P ./models/controlnet/\n",
"\n",
"\n",
"# Controlnet Preprocessor nodes by Fannovel16\n",
"#!cd custom_nodes && git clone https://github.com/Fannovel16/comfy_controlnet_preprocessors; cd comfy_controlnet_preprocessors && python install.py\n",
"\n"
],
"metadata": {
"id": "dddddddddd"
@ -101,7 +110,7 @@
{
"cell_type": "markdown",
"source": [
"### Run ComfyUI with localtunnel\n",
"### Run ComfyUI with localtunnel (Recommended Way)\n",
"\n",
"use the **fp16** model configs for more speed\n",
"\n"
@ -146,7 +155,7 @@
{
"cell_type": "markdown",
"source": [
"### Run ComfyUI with colab iframe (in case localtunnel doesn't work)\n",
"### Run ComfyUI with colab iframe (use only in case the previous way with localtunnel doesn't work)\n",
"use the **fp16** model configs for more speed\n",
"\n",
"You should see the ui appear in an iframe. If you get a 403 error, it's your firefox settings or an extension that's messing things up.\n",

View File

@ -37,10 +37,9 @@ prompt_text = """
}
},
"4": {
"class_type": "CheckpointLoader",
"class_type": "CheckpointLoaderSimple",
"inputs": {
"ckpt_name": "v1-5-pruned-emaonly.ckpt",
"config_name": "v1-inference.yaml"
"ckpt_name": "v1-5-pruned-emaonly.ckpt"
}
},
"5": {

View File

@ -86,9 +86,9 @@ export const defaultGraph = {
},
{
id: 4,
type: "CheckpointLoader",
type: "CheckpointLoaderSimple",
pos: [26, 474],
size: { 0: 315, 1: 122 },
size: { 0: 315, 1: 98 },
flags: {},
order: 0,
mode: 0,
@ -98,7 +98,7 @@ export const defaultGraph = {
{ name: "VAE", type: "VAE", links: [8], slot_index: 2 },
],
properties: {},
widgets_values: ["v1-inference.yaml", "v1-5-pruned-emaonly.ckpt"],
widgets_values: ["v1-5-pruned-emaonly.ckpt"],
},
],
links: [