Support different types of tokenizers.

Support tokenizers without an eos token.

Pass full sentences to tokenizer for more efficient tokenizing.
This commit is contained in:
comfyanonymous 2024-12-10 09:44:13 -05:00
parent a220d11e6b
commit 1c8d11e48a

View File

@ -90,8 +90,11 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
if textmodel_json_config is None:
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
with open(textmodel_json_config) as f:
config = json.load(f)
if isinstance(textmodel_json_config, dict):
config = textmodel_json_config
else:
with open(textmodel_json_config) as f:
config = json.load(f)
operations = model_options.get("custom_operations", None)
scaled_fp8 = None
@ -411,22 +414,25 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
return embed_out
class SDTokenizer:
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, pad_to_max_length=True, min_length=None, pad_token=None, tokenizer_data={}):
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, tokenizer_data={}):
if tokenizer_path is None:
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path)
self.max_length = max_length
self.min_length = min_length
self.end_token = None
empty = self.tokenizer('')["input_ids"]
if has_start_token:
self.tokens_start = 1
self.start_token = empty[0]
self.end_token = empty[1]
if has_end_token:
self.end_token = empty[1]
else:
self.tokens_start = 0
self.start_token = None
self.end_token = empty[0]
if has_end_token:
self.end_token = empty[0]
if pad_token is not None:
self.pad_token = pad_token
@ -451,13 +457,16 @@ class SDTokenizer:
Takes a potential embedding name and tries to retrieve it.
Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
'''
split_embed = embedding_name.split(' ')
embedding_name = split_embed[0]
leftover = ' '.join(split_embed[1:])
embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key)
if embed is None:
stripped = embedding_name.strip(',')
if len(stripped) < len(embedding_name):
embed = load_embed(stripped, self.embedding_directory, self.embedding_size, self.embedding_key)
return (embed, embedding_name[len(stripped):])
return (embed, "")
return (embed, "{} {}".format(embedding_name[len(stripped):], leftover))
return (embed, leftover)
def tokenize_with_weights(self, text:str, return_word_ids=False):
@ -474,7 +483,12 @@ class SDTokenizer:
#tokenize words
tokens = []
for weighted_segment, weight in parsed_weights:
to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ')
to_tokenize = unescape_important(weighted_segment).replace("\n", " ")
split = to_tokenize.split(' {}'.format(self.embedding_identifier))
to_tokenize = [split[0]]
for i in range(1, len(split)):
to_tokenize.append("{}{}".format(self.embedding_identifier, split[i]))
to_tokenize = [x for x in to_tokenize if x != ""]
for word in to_tokenize:
#if we find an embedding, deal with the embedding
@ -493,8 +507,11 @@ class SDTokenizer:
word = leftover
else:
continue
end = 999999999999
if self.end_token is not None:
end = -1
#parse word
tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]])
tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:end]])
#reshape token array to CLIP input size
batched_tokens = []
@ -512,11 +529,13 @@ class SDTokenizer:
#break word in two and add end token
if is_large:
batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]])
batch.append((self.end_token, 1.0, 0))
if self.end_token is not None:
batch.append((self.end_token, 1.0, 0))
t_group = t_group[remaining_length:]
#add end token and pad
else:
batch.append((self.end_token, 1.0, 0))
if self.end_token is not None:
batch.append((self.end_token, 1.0, 0))
if self.pad_to_max_length:
batch.extend([(self.pad_token, 1.0, 0)] * (remaining_length))
#start new batch
@ -529,7 +548,8 @@ class SDTokenizer:
t_group = []
#fill last batch
batch.append((self.end_token, 1.0, 0))
if self.end_token is not None:
batch.append((self.end_token, 1.0, 0))
if self.pad_to_max_length:
batch.extend([(self.pad_token, 1.0, 0)] * (self.max_length - len(batch)))
if self.min_length is not None and len(batch) < self.min_length: