Refactor the attention functions.

There's no reason for the whole CrossAttention object to be repeated when
only the operation in the middle changes.
This commit is contained in:
comfyanonymous 2023-10-11 15:47:53 -04:00
parent 8cc75c64ff
commit 1a4bd9e9a6
2 changed files with 186 additions and 365 deletions

View File

@ -94,253 +94,220 @@ def zero_module(module):
def Normalize(in_channels, dtype=None, device=None):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
def attention_basic(q, k, v, heads, mask=None):
h = heads
scale = (q.shape[-1] // heads) ** -0.5
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
class SpatialSelfAttention(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
# force cast to fp32 to avoid overflowing
if _ATTN_PRECISION =="fp32":
with torch.autocast(enabled=False, device_type = 'cuda'):
q, k = q.float(), k.float()
sim = einsum('b i d, b j d -> b i j', q, k) * scale
else:
sim = einsum('b i d, b j d -> b i j', q, k) * scale
self.norm = Normalize(in_channels)
self.q = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.k = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.v = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.proj_out = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
del q, k
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
if exists(mask):
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
# compute attention
b,c,h,w = q.shape
q = rearrange(q, 'b c h w -> b (h w) c')
k = rearrange(k, 'b c h w -> b c (h w)')
w_ = torch.einsum('bij,bjk->bik', q, k)
# attention, what we cannot get enough of
sim = sim.softmax(dim=-1)
w_ = w_ * (int(c)**(-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
v = rearrange(v, 'b c h w -> b c (h w)')
w_ = rearrange(w_, 'b i j -> b j i')
h_ = torch.einsum('bij,bjk->bik', v, w_)
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
h_ = self.proj_out(h_)
return x+h_
out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
return out
class CrossAttentionBirchSan(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
def attention_sub_quad(query, key, value, heads, mask=None):
scale = (query.shape[-1] // heads) ** -0.5
query = query.unflatten(-1, (heads, -1)).transpose(1,2).flatten(end_dim=1)
key_t = key.transpose(1,2).unflatten(1, (heads, -1)).flatten(end_dim=1)
del key
value = value.unflatten(-1, (heads, -1)).transpose(1,2).flatten(end_dim=1)
self.scale = dim_head ** -0.5
self.heads = heads
dtype = query.dtype
upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32
if upcast_attention:
bytes_per_token = torch.finfo(torch.float32).bits//8
else:
bytes_per_token = torch.finfo(query.dtype).bits//8
batch_x_heads, q_tokens, _ = query.shape
_, _, k_tokens = key_t.shape
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
self.to_out = nn.Sequential(
operations.Linear(inner_dim, query_dim, dtype=dtype, device=device),
nn.Dropout(dropout)
)
chunk_threshold_bytes = mem_free_torch * 0.5 #Using only this seems to work better on AMD
def forward(self, x, context=None, value=None, mask=None):
h = self.heads
kv_chunk_size_min = None
query = self.to_q(x)
context = default(context, x)
key = self.to_k(context)
if value is not None:
value = self.to_v(value)
else:
value = self.to_v(context)
#not sure at all about the math here
#TODO: tweak this
if mem_free_total > 8192 * 1024 * 1024 * 1.3:
query_chunk_size_x = 1024 * 4
elif mem_free_total > 4096 * 1024 * 1024 * 1.3:
query_chunk_size_x = 1024 * 2
else:
query_chunk_size_x = 1024
kv_chunk_size_min_x = None
kv_chunk_size_x = (int((chunk_threshold_bytes // (batch_x_heads * bytes_per_token * query_chunk_size_x)) * 2.0) // 1024) * 1024
if kv_chunk_size_x < 1024:
kv_chunk_size_x = None
del context, x
if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes:
# the big matmul fits into our memory limit; do everything in 1 chunk,
# i.e. send it down the unchunked fast-path
query_chunk_size = q_tokens
kv_chunk_size = k_tokens
else:
query_chunk_size = query_chunk_size_x
kv_chunk_size = kv_chunk_size_x
kv_chunk_size_min = kv_chunk_size_min_x
query = query.unflatten(-1, (self.heads, -1)).transpose(1,2).flatten(end_dim=1)
key_t = key.transpose(1,2).unflatten(1, (self.heads, -1)).flatten(end_dim=1)
del key
value = value.unflatten(-1, (self.heads, -1)).transpose(1,2).flatten(end_dim=1)
hidden_states = efficient_dot_product_attention(
query,
key_t,
value,
query_chunk_size=query_chunk_size,
kv_chunk_size=kv_chunk_size,
kv_chunk_size_min=kv_chunk_size_min,
use_checkpoint=False,
upcast_attention=upcast_attention,
)
dtype = query.dtype
upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32
if upcast_attention:
bytes_per_token = torch.finfo(torch.float32).bits//8
else:
bytes_per_token = torch.finfo(query.dtype).bits//8
batch_x_heads, q_tokens, _ = query.shape
_, _, k_tokens = key_t.shape
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
hidden_states = hidden_states.to(dtype)
mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
return hidden_states
chunk_threshold_bytes = mem_free_torch * 0.5 #Using only this seems to work better on AMD
def attention_split(q, k, v, heads, mask=None):
scale = (q.shape[-1] // heads) ** -0.5
h = heads
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
kv_chunk_size_min = None
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
#not sure at all about the math here
#TODO: tweak this
if mem_free_total > 8192 * 1024 * 1024 * 1.3:
query_chunk_size_x = 1024 * 4
elif mem_free_total > 4096 * 1024 * 1024 * 1.3:
query_chunk_size_x = 1024 * 2
else:
query_chunk_size_x = 1024
kv_chunk_size_min_x = None
kv_chunk_size_x = (int((chunk_threshold_bytes // (batch_x_heads * bytes_per_token * query_chunk_size_x)) * 2.0) // 1024) * 1024
if kv_chunk_size_x < 1024:
kv_chunk_size_x = None
mem_free_total = model_management.get_free_memory(q.device)
if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes:
# the big matmul fits into our memory limit; do everything in 1 chunk,
# i.e. send it down the unchunked fast-path
query_chunk_size = q_tokens
kv_chunk_size = k_tokens
else:
query_chunk_size = query_chunk_size_x
kv_chunk_size = kv_chunk_size_x
kv_chunk_size_min = kv_chunk_size_min_x
hidden_states = efficient_dot_product_attention(
query,
key_t,
value,
query_chunk_size=query_chunk_size,
kv_chunk_size=kv_chunk_size,
kv_chunk_size_min=kv_chunk_size_min,
use_checkpoint=self.training,
upcast_attention=upcast_attention,
)
hidden_states = hidden_states.to(dtype)
hidden_states = hidden_states.unflatten(0, (-1, self.heads)).transpose(1,2).flatten(start_dim=2)
out_proj, dropout = self.to_out
hidden_states = out_proj(hidden_states)
hidden_states = dropout(hidden_states)
return hidden_states
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
modifier = 3 if q.element_size() == 2 else 2.5
mem_required = tensor_size * modifier
steps = 1
class CrossAttentionDoggettx(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
if mem_required > mem_free_total:
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
self.scale = dim_head ** -0.5
self.heads = heads
if steps > 64:
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_out = nn.Sequential(
operations.Linear(inner_dim, query_dim, dtype=dtype, device=device),
nn.Dropout(dropout)
)
def forward(self, x, context=None, value=None, mask=None):
h = self.heads
q_in = self.to_q(x)
context = default(context, x)
k_in = self.to_k(context)
if value is not None:
v_in = self.to_v(value)
del value
else:
v_in = self.to_v(context)
del context, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
mem_free_total = model_management.get_free_memory(q.device)
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
modifier = 3 if q.element_size() == 2 else 2.5
mem_required = tensor_size * modifier
steps = 1
if mem_required > mem_free_total:
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
if steps > 64:
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')
# print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
first_op_done = False
cleared_cache = False
while True:
try:
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
if _ATTN_PRECISION =="fp32":
with torch.autocast(enabled=False, device_type = 'cuda'):
s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * self.scale
else:
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * self.scale
first_op_done = True
s2 = s1.softmax(dim=-1).to(v.dtype)
del s1
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
del s2
break
except model_management.OOM_EXCEPTION as e:
if first_op_done == False:
model_management.soft_empty_cache(True)
if cleared_cache == False:
cleared_cache = True
print("out of memory error, emptying cache and trying again")
continue
steps *= 2
if steps > 64:
raise e
print("out of memory error, increasing steps and trying again", steps)
# print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
first_op_done = False
cleared_cache = False
while True:
try:
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
if _ATTN_PRECISION =="fp32":
with torch.autocast(enabled=False, device_type = 'cuda'):
s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale
else:
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale
first_op_done = True
s2 = s1.softmax(dim=-1).to(v.dtype)
del s1
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
del s2
break
except model_management.OOM_EXCEPTION as e:
if first_op_done == False:
model_management.soft_empty_cache(True)
if cleared_cache == False:
cleared_cache = True
print("out of memory error, emptying cache and trying again")
continue
steps *= 2
if steps > 64:
raise e
print("out of memory error, increasing steps and trying again", steps)
else:
raise e
del q, k, v
del q, k, v
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
del r1
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
del r1
return r2
return self.to_out(r2)
def attention_xformers(q, k, v, heads, mask=None):
b, _, _ = q.shape
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], heads, -1)
.permute(0, 2, 1, 3)
.reshape(b * heads, t.shape[1], -1)
.contiguous(),
(q, k, v),
)
# actually compute the attention, what we cannot get enough of
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
if exists(mask):
raise NotImplementedError
out = (
out.unsqueeze(0)
.reshape(b, heads, out.shape[1], -1)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], -1)
)
return out
def attention_pytorch(q, k, v, heads, mask=None):
b, _, dim_head = q.shape
dim_head //= heads
q, k, v = map(
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
(q, k, v),
)
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
if exists(mask):
raise NotImplementedError
out = (
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
)
return out
optimized_attention = attention_basic
if model_management.xformers_enabled():
print("Using xformers cross attention")
optimized_attention = attention_xformers
elif model_management.pytorch_attention_enabled():
print("Using pytorch cross attention")
optimized_attention = attention_pytorch
else:
if args.use_split_cross_attention:
print("Using split optimization for cross attention")
optimized_attention = attention_split
else:
print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
optimized_attention = attention_sub_quad
class CrossAttention(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
@ -348,62 +315,6 @@ class CrossAttention(nn.Module):
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.scale = dim_head ** -0.5
self.heads = heads
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_out = nn.Sequential(
operations.Linear(inner_dim, query_dim, dtype=dtype, device=device),
nn.Dropout(dropout)
)
def forward(self, x, context=None, value=None, mask=None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
if value is not None:
v = self.to_v(value)
del value
else:
v = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
# force cast to fp32 to avoid overflowing
if _ATTN_PRECISION =="fp32":
with torch.autocast(enabled=False, device_type = 'cuda'):
q, k = q.float(), k.float()
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
else:
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
del q, k
if exists(mask):
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
# attention, what we cannot get enough of
sim = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', sim, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
return self.to_out(out)
class MemoryEfficientCrossAttention(nn.Module):
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, dtype=None, device=None, operations=comfy.ops):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.heads = heads
self.dim_head = dim_head
@ -412,7 +323,6 @@ class MemoryEfficientCrossAttention(nn.Module):
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
self.attention_op: Optional[Any] = None
def forward(self, x, context=None, value=None, mask=None):
q = self.to_q(x)
@ -424,85 +334,9 @@ class MemoryEfficientCrossAttention(nn.Module):
else:
v = self.to_v(context)
b, _, _ = q.shape
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], self.heads, self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * self.heads, t.shape[1], self.dim_head)
.contiguous(),
(q, k, v),
)
# actually compute the attention, what we cannot get enough of
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
if exists(mask):
raise NotImplementedError
out = (
out.unsqueeze(0)
.reshape(b, self.heads, out.shape[1], self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], self.heads * self.dim_head)
)
out = optimized_attention(q, k, v, self.heads, mask)
return self.to_out(out)
class CrossAttentionPytorch(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.heads = heads
self.dim_head = dim_head
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
self.attention_op: Optional[Any] = None
def forward(self, x, context=None, value=None, mask=None):
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
if value is not None:
v = self.to_v(value)
del value
else:
v = self.to_v(context)
b, _, _ = q.shape
q, k, v = map(
lambda t: t.view(b, -1, self.heads, self.dim_head).transpose(1, 2),
(q, k, v),
)
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
if exists(mask):
raise NotImplementedError
out = (
out.transpose(1, 2).reshape(b, -1, self.heads * self.dim_head)
)
return self.to_out(out)
if model_management.xformers_enabled():
print("Using xformers cross attention")
CrossAttention = MemoryEfficientCrossAttention
elif model_management.pytorch_attention_enabled():
print("Using pytorch cross attention")
CrossAttention = CrossAttentionPytorch
else:
if args.use_split_cross_attention:
print("Using split optimization for cross attention")
CrossAttention = CrossAttentionDoggettx
else:
print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
CrossAttention = CrossAttentionBirchSan
class BasicTransformerBlock(nn.Module):
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,

View File

@ -6,7 +6,6 @@ import numpy as np
from einops import rearrange
from typing import Optional, Any
from ..attention import MemoryEfficientCrossAttention
from comfy import model_management
import comfy.ops
@ -352,15 +351,6 @@ class MemoryEfficientAttnBlockPytorch(nn.Module):
out = self.proj_out(out)
return x+out
class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
def forward(self, x, context=None, mask=None):
b, c, h, w = x.shape
x = rearrange(x, 'b c h w -> b (h w) c')
out = super().forward(x, context=context, mask=mask)
out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c)
return x + out
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown'
if model_management.xformers_enabled_vae() and attn_type == "vanilla":
@ -376,9 +366,6 @@ def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
return MemoryEfficientAttnBlock(in_channels)
elif attn_type == "vanilla-pytorch":
return MemoryEfficientAttnBlockPytorch(in_channels)
elif type == "memory-efficient-cross-attn":
attn_kwargs["query_dim"] = in_channels
return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
elif attn_type == "none":
return nn.Identity(in_channels)
else: