Add FreSca node (#7631)

This commit is contained in:
BVH 2025-04-18 00:54:33 +05:30 committed by GitHub
parent 93292bc450
commit 19373aee75
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 104 additions and 1 deletions

View File

@ -0,0 +1,102 @@
# Code based on https://github.com/WikiChao/FreSca (MIT License)
import torch
import torch.fft as fft
def Fourier_filter(x, scale_low=1.0, scale_high=1.5, freq_cutoff=20):
"""
Apply frequency-dependent scaling to an image tensor using Fourier transforms.
Parameters:
x: Input tensor of shape (B, C, H, W)
scale_low: Scaling factor for low-frequency components (default: 1.0)
scale_high: Scaling factor for high-frequency components (default: 1.5)
freq_cutoff: Number of frequency indices around center to consider as low-frequency (default: 20)
Returns:
x_filtered: Filtered version of x in spatial domain with frequency-specific scaling applied.
"""
# Preserve input dtype and device
dtype, device = x.dtype, x.device
# Convert to float32 for FFT computations
x = x.to(torch.float32)
# 1) Apply FFT and shift low frequencies to center
x_freq = fft.fftn(x, dim=(-2, -1))
x_freq = fft.fftshift(x_freq, dim=(-2, -1))
# 2) Create a mask to scale frequencies differently
B, C, H, W = x_freq.shape
crow, ccol = H // 2, W // 2
# Initialize mask with high-frequency scaling factor
mask = torch.ones((B, C, H, W), device=device) * scale_high
# Apply low-frequency scaling factor to center region
mask[
...,
crow - freq_cutoff : crow + freq_cutoff,
ccol - freq_cutoff : ccol + freq_cutoff,
] = scale_low
# 3) Apply frequency-specific scaling
x_freq = x_freq * mask
# 4) Convert back to spatial domain
x_freq = fft.ifftshift(x_freq, dim=(-2, -1))
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real
# 5) Restore original dtype
x_filtered = x_filtered.to(dtype)
return x_filtered
class FreSca:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"scale_low": ("FLOAT", {"default": 1.0, "min": 0, "max": 10, "step": 0.01,
"tooltip": "Scaling factor for low-frequency components"}),
"scale_high": ("FLOAT", {"default": 1.25, "min": 0, "max": 10, "step": 0.01,
"tooltip": "Scaling factor for high-frequency components"}),
"freq_cutoff": ("INT", {"default": 20, "min": 1, "max": 100, "step": 1,
"tooltip": "Number of frequency indices around center to consider as low-frequency"}),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "_for_testing"
DESCRIPTION = "Applies frequency-dependent scaling to the guidance"
def patch(self, model, scale_low, scale_high, freq_cutoff):
def custom_cfg_function(args):
cond = args["conds_out"][0]
uncond = args["conds_out"][1]
guidance = cond - uncond
filtered_guidance = Fourier_filter(
guidance,
scale_low=scale_low,
scale_high=scale_high,
freq_cutoff=freq_cutoff,
)
filtered_cond = filtered_guidance + uncond
return [filtered_cond, uncond]
m = model.clone()
m.set_model_sampler_pre_cfg_function(custom_cfg_function)
return (m,)
NODE_CLASS_MAPPINGS = {
"FreSca": FreSca,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"FreSca": "FreSca",
}

View File

@ -2281,7 +2281,8 @@ def init_builtin_extra_nodes():
"nodes_primitive.py",
"nodes_cfg.py",
"nodes_optimalsteps.py",
"nodes_hidream.py"
"nodes_hidream.py",
"nodes_fresca.py",
]
import_failed = []