From 180439795282612e2873c345c39d661ff622f229 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Thu, 27 Feb 2025 16:39:57 -0500 Subject: [PATCH] Use fp16 if checkpoint weights are fp16 and the model supports it. --- comfy/controlnet.py | 10 ++-------- comfy/model_management.py | 10 ++++------ comfy/sd.py | 12 ++++++------ 3 files changed, 12 insertions(+), 20 deletions(-) diff --git a/comfy/controlnet.py b/comfy/controlnet.py index ee29251b9..ceb24c852 100644 --- a/comfy/controlnet.py +++ b/comfy/controlnet.py @@ -418,10 +418,7 @@ def controlnet_config(sd, model_options={}): weight_dtype = comfy.utils.weight_dtype(sd) supported_inference_dtypes = list(model_config.supported_inference_dtypes) - if weight_dtype is not None: - supported_inference_dtypes.append(weight_dtype) - - unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes) + unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes, weight_dtype=weight_dtype) load_device = comfy.model_management.get_torch_device() manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device) @@ -689,10 +686,7 @@ def load_controlnet_state_dict(state_dict, model=None, model_options={}): if supported_inference_dtypes is None: supported_inference_dtypes = [comfy.model_management.unet_dtype()] - if weight_dtype is not None: - supported_inference_dtypes.append(weight_dtype) - - unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes) + unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes, weight_dtype=weight_dtype) load_device = comfy.model_management.get_torch_device() diff --git a/comfy/model_management.py b/comfy/model_management.py index 49eaf7948..987b45e41 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -674,7 +674,7 @@ def unet_inital_load_device(parameters, dtype): def maximum_vram_for_weights(device=None): return (get_total_memory(device) * 0.88 - minimum_inference_memory()) -def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]): +def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32], weight_dtype=None): if model_params < 0: model_params = 1000000000000000000000 if args.fp32_unet: @@ -692,10 +692,8 @@ def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, tor fp8_dtype = None try: - for dtype in [torch.float8_e4m3fn, torch.float8_e5m2]: - if dtype in supported_dtypes: - fp8_dtype = dtype - break + if weight_dtype in [torch.float8_e4m3fn, torch.float8_e5m2]: + fp8_dtype = weight_dtype except: pass @@ -707,7 +705,7 @@ def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, tor if model_params * 2 > free_model_memory: return fp8_dtype - if PRIORITIZE_FP16: + if PRIORITIZE_FP16 or weight_dtype == torch.float16: if torch.float16 in supported_dtypes and should_use_fp16(device=device, model_params=model_params): return torch.float16 diff --git a/comfy/sd.py b/comfy/sd.py index 640253b09..21913cf3e 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -896,14 +896,14 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c return None unet_weight_dtype = list(model_config.supported_inference_dtypes) - if weight_dtype is not None and model_config.scaled_fp8 is None: - unet_weight_dtype.append(weight_dtype) + if model_config.scaled_fp8 is not None: + weight_dtype = None model_config.custom_operations = model_options.get("custom_operations", None) unet_dtype = model_options.get("dtype", model_options.get("weight_dtype", None)) if unet_dtype is None: - unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype) + unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype, weight_dtype=weight_dtype) manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes) model_config.set_inference_dtype(unet_dtype, manual_cast_dtype) @@ -994,11 +994,11 @@ def load_diffusion_model_state_dict(sd, model_options={}): #load unet in diffuse offload_device = model_management.unet_offload_device() unet_weight_dtype = list(model_config.supported_inference_dtypes) - if weight_dtype is not None and model_config.scaled_fp8 is None: - unet_weight_dtype.append(weight_dtype) + if model_config.scaled_fp8 is not None: + weight_dtype = None if dtype is None: - unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype) + unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype, weight_dtype=weight_dtype) else: unet_dtype = dtype