This commit is contained in:
Jedrzej Kosinski 2025-04-11 07:21:31 -04:00 committed by GitHub
commit 13ffde9faa
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 760 additions and 31 deletions

View File

@ -49,7 +49,7 @@ parser.add_argument("--temp-directory", type=str, default=None, help="Set the Co
parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory. Overrides --base-directory.") parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory. Overrides --base-directory.")
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.") parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.") parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.") parser.add_argument("--cuda-device", type=str, default=None, metavar="DEVICE_ID", help="Set the ids of cuda devices this instance will use.")
cm_group = parser.add_mutually_exclusive_group() cm_group = parser.add_mutually_exclusive_group()
cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).") cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.") cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")

View File

@ -15,13 +15,14 @@
You should have received a copy of the GNU General Public License You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. along with this program. If not, see <https://www.gnu.org/licenses/>.
""" """
from __future__ import annotations
import torch import torch
from enum import Enum from enum import Enum
import math import math
import os import os
import logging import logging
import copy
import comfy.utils import comfy.utils
import comfy.model_management import comfy.model_management
import comfy.model_detection import comfy.model_detection
@ -36,7 +37,7 @@ import comfy.cldm.mmdit
import comfy.ldm.hydit.controlnet import comfy.ldm.hydit.controlnet
import comfy.ldm.flux.controlnet import comfy.ldm.flux.controlnet
import comfy.cldm.dit_embedder import comfy.cldm.dit_embedder
from typing import TYPE_CHECKING from typing import TYPE_CHECKING, Union
if TYPE_CHECKING: if TYPE_CHECKING:
from comfy.hooks import HookGroup from comfy.hooks import HookGroup
@ -63,6 +64,18 @@ class StrengthType(Enum):
CONSTANT = 1 CONSTANT = 1
LINEAR_UP = 2 LINEAR_UP = 2
class ControlIsolation:
'''Temporarily set a ControlBase object's previous_controlnet to None to prevent cascading calls.'''
def __init__(self, control: ControlBase):
self.control = control
self.orig_previous_controlnet = control.previous_controlnet
def __enter__(self):
self.control.previous_controlnet = None
def __exit__(self, *args):
self.control.previous_controlnet = self.orig_previous_controlnet
class ControlBase: class ControlBase:
def __init__(self): def __init__(self):
self.cond_hint_original = None self.cond_hint_original = None
@ -76,7 +89,7 @@ class ControlBase:
self.compression_ratio = 8 self.compression_ratio = 8
self.upscale_algorithm = 'nearest-exact' self.upscale_algorithm = 'nearest-exact'
self.extra_args = {} self.extra_args = {}
self.previous_controlnet = None self.previous_controlnet: Union[ControlBase, None] = None
self.extra_conds = [] self.extra_conds = []
self.strength_type = StrengthType.CONSTANT self.strength_type = StrengthType.CONSTANT
self.concat_mask = False self.concat_mask = False
@ -84,6 +97,7 @@ class ControlBase:
self.extra_concat = None self.extra_concat = None
self.extra_hooks: HookGroup = None self.extra_hooks: HookGroup = None
self.preprocess_image = lambda a: a self.preprocess_image = lambda a: a
self.multigpu_clones: dict[torch.device, ControlBase] = {}
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None, extra_concat=[]): def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None, extra_concat=[]):
self.cond_hint_original = cond_hint self.cond_hint_original = cond_hint
@ -110,17 +124,38 @@ class ControlBase:
def cleanup(self): def cleanup(self):
if self.previous_controlnet is not None: if self.previous_controlnet is not None:
self.previous_controlnet.cleanup() self.previous_controlnet.cleanup()
for device_cnet in self.multigpu_clones.values():
with ControlIsolation(device_cnet):
device_cnet.cleanup()
self.cond_hint = None self.cond_hint = None
self.extra_concat = None self.extra_concat = None
self.timestep_range = None self.timestep_range = None
def get_models(self): def get_models(self):
out = [] out = []
for device_cnet in self.multigpu_clones.values():
out += device_cnet.get_models_only_self()
if self.previous_controlnet is not None: if self.previous_controlnet is not None:
out += self.previous_controlnet.get_models() out += self.previous_controlnet.get_models()
return out return out
def get_models_only_self(self):
'Calls get_models, but temporarily sets previous_controlnet to None.'
with ControlIsolation(self):
return self.get_models()
def get_instance_for_device(self, device):
'Returns instance of this Control object intended for selected device.'
return self.multigpu_clones.get(device, self)
def deepclone_multigpu(self, load_device, autoregister=False):
'''
Create deep clone of Control object where model(s) is set to other devices.
When autoregister is set to True, the deep clone is also added to multigpu_clones dict.
'''
raise NotImplementedError("Classes inheriting from ControlBase should define their own deepclone_multigpu funtion.")
def get_extra_hooks(self): def get_extra_hooks(self):
out = [] out = []
if self.extra_hooks is not None: if self.extra_hooks is not None:
@ -129,7 +164,7 @@ class ControlBase:
out += self.previous_controlnet.get_extra_hooks() out += self.previous_controlnet.get_extra_hooks()
return out return out
def copy_to(self, c): def copy_to(self, c: ControlBase):
c.cond_hint_original = self.cond_hint_original c.cond_hint_original = self.cond_hint_original
c.strength = self.strength c.strength = self.strength
c.timestep_percent_range = self.timestep_percent_range c.timestep_percent_range = self.timestep_percent_range
@ -280,6 +315,14 @@ class ControlNet(ControlBase):
self.copy_to(c) self.copy_to(c)
return c return c
def deepclone_multigpu(self, load_device, autoregister=False):
c = self.copy()
c.control_model = copy.deepcopy(c.control_model)
c.control_model_wrapped = comfy.model_patcher.ModelPatcher(c.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
if autoregister:
self.multigpu_clones[load_device] = c
return c
def get_models(self): def get_models(self):
out = super().get_models() out = super().get_models()
out.append(self.control_model_wrapped) out.append(self.control_model_wrapped)
@ -804,6 +847,14 @@ class T2IAdapter(ControlBase):
self.copy_to(c) self.copy_to(c)
return c return c
def deepclone_multigpu(self, load_device, autoregister=False):
c = self.copy()
c.t2i_model = copy.deepcopy(c.t2i_model)
c.device = load_device
if autoregister:
self.multigpu_clones[load_device] = c
return c
def load_t2i_adapter(t2i_data, model_options={}): #TODO: model_options def load_t2i_adapter(t2i_data, model_options={}): #TODO: model_options
compression_ratio = 8 compression_ratio = 8
upscale_algorithm = 'nearest-exact' upscale_algorithm = 'nearest-exact'

View File

@ -15,6 +15,7 @@
You should have received a copy of the GNU General Public License You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. along with this program. If not, see <https://www.gnu.org/licenses/>.
""" """
from __future__ import annotations
import psutil import psutil
import logging import logging
@ -26,6 +27,10 @@ import platform
import weakref import weakref
import gc import gc
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher
class VRAMState(Enum): class VRAMState(Enum):
DISABLED = 0 #No vram present: no need to move models to vram DISABLED = 0 #No vram present: no need to move models to vram
NO_VRAM = 1 #Very low vram: enable all the options to save vram NO_VRAM = 1 #Very low vram: enable all the options to save vram
@ -171,6 +176,25 @@ def get_torch_device():
else: else:
return torch.device(torch.cuda.current_device()) return torch.device(torch.cuda.current_device())
def get_all_torch_devices(exclude_current=False):
global cpu_state
devices = []
if cpu_state == CPUState.GPU:
if is_nvidia():
for i in range(torch.cuda.device_count()):
devices.append(torch.device(i))
elif is_intel_xpu():
for i in range(torch.xpu.device_count()):
devices.append(torch.device(i))
elif is_ascend_npu():
for i in range(torch.npu.device_count()):
devices.append(torch.device(i))
else:
devices.append(get_torch_device())
if exclude_current:
devices.remove(get_torch_device())
return devices
def get_total_memory(dev=None, torch_total_too=False): def get_total_memory(dev=None, torch_total_too=False):
global directml_enabled global directml_enabled
if dev is None: if dev is None:
@ -382,9 +406,13 @@ try:
logging.info("Device: {}".format(get_torch_device_name(get_torch_device()))) logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
except: except:
logging.warning("Could not pick default device.") logging.warning("Could not pick default device.")
try:
for device in get_all_torch_devices(exclude_current=True):
logging.info("Device: {}".format(get_torch_device_name(device)))
except:
pass
current_loaded_models: list[LoadedModel] = []
current_loaded_models = []
def module_size(module): def module_size(module):
module_mem = 0 module_mem = 0
@ -395,7 +423,7 @@ def module_size(module):
return module_mem return module_mem
class LoadedModel: class LoadedModel:
def __init__(self, model): def __init__(self, model: ModelPatcher):
self._set_model(model) self._set_model(model)
self.device = model.load_device self.device = model.load_device
self.real_model = None self.real_model = None
@ -403,7 +431,7 @@ class LoadedModel:
self.model_finalizer = None self.model_finalizer = None
self._patcher_finalizer = None self._patcher_finalizer = None
def _set_model(self, model): def _set_model(self, model: ModelPatcher):
self._model = weakref.ref(model) self._model = weakref.ref(model)
if model.parent is not None: if model.parent is not None:
self._parent_model = weakref.ref(model.parent) self._parent_model = weakref.ref(model.parent)
@ -1246,6 +1274,31 @@ def soft_empty_cache(force=False):
def unload_all_models(): def unload_all_models():
free_memory(1e30, get_torch_device()) free_memory(1e30, get_torch_device())
def unload_model_and_clones(model: ModelPatcher, unload_additional_models=True, all_devices=False):
'Unload only model and its clones - primarily for multigpu cloning purposes.'
initial_keep_loaded: list[LoadedModel] = current_loaded_models.copy()
additional_models = []
if unload_additional_models:
additional_models = model.get_nested_additional_models()
keep_loaded = []
for loaded_model in initial_keep_loaded:
if loaded_model.model is not None:
if model.clone_base_uuid == loaded_model.model.clone_base_uuid:
continue
# check additional models if they are a match
skip = False
for add_model in additional_models:
if add_model.clone_base_uuid == loaded_model.model.clone_base_uuid:
skip = True
break
if skip:
continue
keep_loaded.append(loaded_model)
if not all_devices:
free_memory(1e30, get_torch_device(), keep_loaded)
else:
for device in get_all_torch_devices():
free_memory(1e30, device, keep_loaded)
#TODO: might be cleaner to put this somewhere else #TODO: might be cleaner to put this somewhere else
import threading import threading

View File

@ -84,12 +84,15 @@ def set_model_options_pre_cfg_function(model_options, pre_cfg_function, disable_
def create_model_options_clone(orig_model_options: dict): def create_model_options_clone(orig_model_options: dict):
return comfy.patcher_extension.copy_nested_dicts(orig_model_options) return comfy.patcher_extension.copy_nested_dicts(orig_model_options)
def create_hook_patches_clone(orig_hook_patches): def create_hook_patches_clone(orig_hook_patches, copy_tuples=False):
new_hook_patches = {} new_hook_patches = {}
for hook_ref in orig_hook_patches: for hook_ref in orig_hook_patches:
new_hook_patches[hook_ref] = {} new_hook_patches[hook_ref] = {}
for k in orig_hook_patches[hook_ref]: for k in orig_hook_patches[hook_ref]:
new_hook_patches[hook_ref][k] = orig_hook_patches[hook_ref][k][:] new_hook_patches[hook_ref][k] = orig_hook_patches[hook_ref][k][:]
if copy_tuples:
for i in range(len(new_hook_patches[hook_ref][k])):
new_hook_patches[hook_ref][k][i] = tuple(new_hook_patches[hook_ref][k][i])
return new_hook_patches return new_hook_patches
def wipe_lowvram_weight(m): def wipe_lowvram_weight(m):
@ -240,6 +243,9 @@ class ModelPatcher:
self.is_clip = False self.is_clip = False
self.hook_mode = comfy.hooks.EnumHookMode.MaxSpeed self.hook_mode = comfy.hooks.EnumHookMode.MaxSpeed
self.is_multigpu_base_clone = False
self.clone_base_uuid = uuid.uuid4()
if not hasattr(self.model, 'model_loaded_weight_memory'): if not hasattr(self.model, 'model_loaded_weight_memory'):
self.model.model_loaded_weight_memory = 0 self.model.model_loaded_weight_memory = 0
@ -318,18 +324,92 @@ class ModelPatcher:
n.is_clip = self.is_clip n.is_clip = self.is_clip
n.hook_mode = self.hook_mode n.hook_mode = self.hook_mode
n.is_multigpu_base_clone = self.is_multigpu_base_clone
n.clone_base_uuid = self.clone_base_uuid
for callback in self.get_all_callbacks(CallbacksMP.ON_CLONE): for callback in self.get_all_callbacks(CallbacksMP.ON_CLONE):
callback(self, n) callback(self, n)
return n return n
def deepclone_multigpu(self, new_load_device=None, models_cache: dict[uuid.UUID,ModelPatcher]=None):
logging.info(f"Creating deepclone of {self.model.__class__.__name__} for {new_load_device if new_load_device else self.load_device}.")
comfy.model_management.unload_model_and_clones(self)
n = self.clone()
# set load device, if present
if new_load_device is not None:
n.load_device = new_load_device
# unlike for normal clone, backup dicts that shared same ref should not;
# otherwise, patchers that have deep copies of base models will erroneously influence each other.
n.backup = copy.deepcopy(n.backup)
n.object_patches_backup = copy.deepcopy(n.object_patches_backup)
n.hook_backup = copy.deepcopy(n.hook_backup)
n.model = copy.deepcopy(n.model)
# multigpu clone should not have multigpu additional_models entry
n.remove_additional_models("multigpu")
# multigpu_clone all stored additional_models; make sure circular references are properly handled
if models_cache is None:
models_cache = {}
for key, model_list in n.additional_models.items():
for i in range(len(model_list)):
add_model = n.additional_models[key][i]
if add_model.clone_base_uuid not in models_cache:
models_cache[add_model.clone_base_uuid] = add_model.deepclone_multigpu(new_load_device=new_load_device, models_cache=models_cache)
n.additional_models[key][i] = models_cache[add_model.clone_base_uuid]
for callback in self.get_all_callbacks(CallbacksMP.ON_DEEPCLONE_MULTIGPU):
callback(self, n)
return n
def match_multigpu_clones(self):
multigpu_models = self.get_additional_models_with_key("multigpu")
if len(multigpu_models) > 0:
new_multigpu_models = []
for mm in multigpu_models:
# clone main model, but bring over relevant props from existing multigpu clone
n = self.clone()
n.load_device = mm.load_device
n.backup = mm.backup
n.object_patches_backup = mm.object_patches_backup
n.hook_backup = mm.hook_backup
n.model = mm.model
n.is_multigpu_base_clone = mm.is_multigpu_base_clone
n.remove_additional_models("multigpu")
orig_additional_models: dict[str, list[ModelPatcher]] = comfy.patcher_extension.copy_nested_dicts(n.additional_models)
n.additional_models = comfy.patcher_extension.copy_nested_dicts(mm.additional_models)
# figure out which additional models are not present in multigpu clone
models_cache = {}
for mm_add_model in mm.get_additional_models():
models_cache[mm_add_model.clone_base_uuid] = mm_add_model
remove_models_uuids = set(list(models_cache.keys()))
for key, model_list in orig_additional_models.items():
for orig_add_model in model_list:
if orig_add_model.clone_base_uuid not in models_cache:
models_cache[orig_add_model.clone_base_uuid] = orig_add_model.deepclone_multigpu(new_load_device=n.load_device, models_cache=models_cache)
existing_list = n.get_additional_models_with_key(key)
existing_list.append(models_cache[orig_add_model.clone_base_uuid])
n.set_additional_models(key, existing_list)
if orig_add_model.clone_base_uuid in remove_models_uuids:
remove_models_uuids.remove(orig_add_model.clone_base_uuid)
# remove duplicate additional models
for key, model_list in n.additional_models.items():
new_model_list = [x for x in model_list if x.clone_base_uuid not in remove_models_uuids]
n.set_additional_models(key, new_model_list)
for callback in self.get_all_callbacks(CallbacksMP.ON_MATCH_MULTIGPU_CLONES):
callback(self, n)
new_multigpu_models.append(n)
self.set_additional_models("multigpu", new_multigpu_models)
def is_clone(self, other): def is_clone(self, other):
if hasattr(other, 'model') and self.model is other.model: if hasattr(other, 'model') and self.model is other.model:
return True return True
return False return False
def clone_has_same_weights(self, clone: 'ModelPatcher'): def clone_has_same_weights(self, clone: ModelPatcher, allow_multigpu=False):
if not self.is_clone(clone): if allow_multigpu:
return False if self.clone_base_uuid != clone.clone_base_uuid:
return False
else:
if not self.is_clone(clone):
return False
if self.current_hooks != clone.current_hooks: if self.current_hooks != clone.current_hooks:
return False return False
@ -929,7 +1009,7 @@ class ModelPatcher:
return self.additional_models.get(key, []) return self.additional_models.get(key, [])
def get_additional_models(self): def get_additional_models(self):
all_models = [] all_models: list[ModelPatcher] = []
for models in self.additional_models.values(): for models in self.additional_models.values():
all_models.extend(models) all_models.extend(models)
return all_models return all_models
@ -983,9 +1063,13 @@ class ModelPatcher:
for callback in self.get_all_callbacks(CallbacksMP.ON_PRE_RUN): for callback in self.get_all_callbacks(CallbacksMP.ON_PRE_RUN):
callback(self) callback(self)
def prepare_state(self, timestep): def prepare_state(self, timestep, model_options, ignore_multigpu=False):
for callback in self.get_all_callbacks(CallbacksMP.ON_PREPARE_STATE): for callback in self.get_all_callbacks(CallbacksMP.ON_PREPARE_STATE):
callback(self, timestep) callback(self, timestep, model_options, ignore_multigpu)
if not ignore_multigpu and "multigpu_clones" in model_options:
for p in model_options["multigpu_clones"].values():
p: ModelPatcher
p.prepare_state(timestep, model_options, ignore_multigpu=True)
def restore_hook_patches(self): def restore_hook_patches(self):
if self.hook_patches_backup is not None: if self.hook_patches_backup is not None:
@ -998,12 +1082,18 @@ class ModelPatcher:
def prepare_hook_patches_current_keyframe(self, t: torch.Tensor, hook_group: comfy.hooks.HookGroup, model_options: dict[str]): def prepare_hook_patches_current_keyframe(self, t: torch.Tensor, hook_group: comfy.hooks.HookGroup, model_options: dict[str]):
curr_t = t[0] curr_t = t[0]
reset_current_hooks = False reset_current_hooks = False
multigpu_kf_changed_cache = None
transformer_options = model_options.get("transformer_options", {}) transformer_options = model_options.get("transformer_options", {})
for hook in hook_group.hooks: for hook in hook_group.hooks:
changed = hook.hook_keyframe.prepare_current_keyframe(curr_t=curr_t, transformer_options=transformer_options) changed = hook.hook_keyframe.prepare_current_keyframe(curr_t=curr_t, transformer_options=transformer_options)
# if keyframe changed, remove any cached HookGroups that contain hook with the same hook_ref; # if keyframe changed, remove any cached HookGroups that contain hook with the same hook_ref;
# this will cause the weights to be recalculated when sampling # this will cause the weights to be recalculated when sampling
if changed: if changed:
# cache changed for multigpu usage
if "multigpu_clones" in model_options:
if multigpu_kf_changed_cache is None:
multigpu_kf_changed_cache = []
multigpu_kf_changed_cache.append(hook)
# reset current_hooks if contains hook that changed # reset current_hooks if contains hook that changed
if self.current_hooks is not None: if self.current_hooks is not None:
for current_hook in self.current_hooks.hooks: for current_hook in self.current_hooks.hooks:
@ -1015,6 +1105,28 @@ class ModelPatcher:
self.cached_hook_patches.pop(cached_group) self.cached_hook_patches.pop(cached_group)
if reset_current_hooks: if reset_current_hooks:
self.patch_hooks(None) self.patch_hooks(None)
if "multigpu_clones" in model_options:
for p in model_options["multigpu_clones"].values():
p: ModelPatcher
p._handle_changed_hook_keyframes(multigpu_kf_changed_cache)
def _handle_changed_hook_keyframes(self, kf_changed_cache: list[comfy.hooks.Hook]):
'Used to handle multigpu behavior inside prepare_hook_patches_current_keyframe.'
if kf_changed_cache is None:
return
reset_current_hooks = False
# reset current_hooks if contains hook that changed
for hook in kf_changed_cache:
if self.current_hooks is not None:
for current_hook in self.current_hooks.hooks:
if current_hook == hook:
reset_current_hooks = True
break
for cached_group in list(self.cached_hook_patches.keys()):
if cached_group.contains(hook):
self.cached_hook_patches.pop(cached_group)
if reset_current_hooks:
self.patch_hooks(None)
def register_all_hook_patches(self, hooks: comfy.hooks.HookGroup, target_dict: dict[str], model_options: dict=None, def register_all_hook_patches(self, hooks: comfy.hooks.HookGroup, target_dict: dict[str], model_options: dict=None,
registered: comfy.hooks.HookGroup = None): registered: comfy.hooks.HookGroup = None):

167
comfy/multigpu.py Normal file
View File

@ -0,0 +1,167 @@
from __future__ import annotations
import torch
import logging
from collections import namedtuple
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher
import comfy.utils
import comfy.patcher_extension
import comfy.model_management
class GPUOptions:
def __init__(self, device_index: int, relative_speed: float):
self.device_index = device_index
self.relative_speed = relative_speed
def clone(self):
return GPUOptions(self.device_index, self.relative_speed)
def create_dict(self):
return {
"relative_speed": self.relative_speed
}
class GPUOptionsGroup:
def __init__(self):
self.options: dict[int, GPUOptions] = {}
def add(self, info: GPUOptions):
self.options[info.device_index] = info
def clone(self):
c = GPUOptionsGroup()
for opt in self.options.values():
c.add(opt)
return c
def register(self, model: ModelPatcher):
opts_dict = {}
# get devices that are valid for this model
devices: list[torch.device] = [model.load_device]
for extra_model in model.get_additional_models_with_key("multigpu"):
extra_model: ModelPatcher
devices.append(extra_model.load_device)
# create dictionary with actual device mapped to its GPUOptions
device_opts_list: list[GPUOptions] = []
for device in devices:
device_opts = self.options.get(device.index, GPUOptions(device_index=device.index, relative_speed=1.0))
opts_dict[device] = device_opts.create_dict()
device_opts_list.append(device_opts)
# make relative_speed relative to 1.0
min_speed = min([x.relative_speed for x in device_opts_list])
for value in opts_dict.values():
value['relative_speed'] /= min_speed
model.model_options['multigpu_options'] = opts_dict
def create_multigpu_deepclones(model: ModelPatcher, max_gpus: int, gpu_options: GPUOptionsGroup=None, reuse_loaded=False):
'Prepare ModelPatcher to contain deepclones of its BaseModel and related properties.'
model = model.clone()
# check if multigpu is already prepared - get the load devices from them if possible to exclude
skip_devices = set()
multigpu_models = model.get_additional_models_with_key("multigpu")
if len(multigpu_models) > 0:
for mm in multigpu_models:
skip_devices.add(mm.load_device)
skip_devices = list(skip_devices)
full_extra_devices = comfy.model_management.get_all_torch_devices(exclude_current=True)
limit_extra_devices = full_extra_devices[:max_gpus-1]
extra_devices = limit_extra_devices.copy()
# exclude skipped devices
for skip in skip_devices:
if skip in extra_devices:
extra_devices.remove(skip)
# create new deepclones
if len(extra_devices) > 0:
for device in extra_devices:
device_patcher = None
if reuse_loaded:
# check if there are any ModelPatchers currently loaded that could be referenced here after a clone
loaded_models: list[ModelPatcher] = comfy.model_management.loaded_models()
for lm in loaded_models:
if lm.model is not None and lm.clone_base_uuid == model.clone_base_uuid and lm.load_device == device:
device_patcher = lm.clone()
logging.info(f"Reusing loaded deepclone of {device_patcher.model.__class__.__name__} for {device}")
break
if device_patcher is None:
device_patcher = model.deepclone_multigpu(new_load_device=device)
device_patcher.is_multigpu_base_clone = True
multigpu_models = model.get_additional_models_with_key("multigpu")
multigpu_models.append(device_patcher)
model.set_additional_models("multigpu", multigpu_models)
model.match_multigpu_clones()
if gpu_options is None:
gpu_options = GPUOptionsGroup()
gpu_options.register(model)
else:
logging.info("No extra torch devices need initialization, skipping initializing MultiGPU Work Units.")
# TODO: only keep model clones that don't go 'past' the intended max_gpu count
# multigpu_models = model.get_additional_models_with_key("multigpu")
# new_multigpu_models = []
# for m in multigpu_models:
# if m.load_device in limit_extra_devices:
# new_multigpu_models.append(m)
# model.set_additional_models("multigpu", new_multigpu_models)
# persist skip_devices for use in sampling code
# if len(skip_devices) > 0 or "multigpu_skip_devices" in model.model_options:
# model.model_options["multigpu_skip_devices"] = skip_devices
return model
LoadBalance = namedtuple('LoadBalance', ['work_per_device', 'idle_time'])
def load_balance_devices(model_options: dict[str], total_work: int, return_idle_time=False, work_normalized: int=None):
'Optimize work assigned to different devices, accounting for their relative speeds and splittable work.'
opts_dict = model_options['multigpu_options']
devices = list(model_options['multigpu_clones'].keys())
speed_per_device = []
work_per_device = []
# get sum of each device's relative_speed
total_speed = 0.0
for opts in opts_dict.values():
total_speed += opts['relative_speed']
# get relative work for each device;
# obtained by w = (W*r)/R
for device in devices:
relative_speed = opts_dict[device]['relative_speed']
relative_work = (total_work*relative_speed) / total_speed
speed_per_device.append(relative_speed)
work_per_device.append(relative_work)
# relative work must be expressed in whole numbers, but likely is a decimal;
# perform rounding while maintaining total sum equal to total work (sum of relative works)
work_per_device = round_preserved(work_per_device)
dict_work_per_device = {}
for device, relative_work in zip(devices, work_per_device):
dict_work_per_device[device] = relative_work
if not return_idle_time:
return LoadBalance(dict_work_per_device, None)
# divide relative work by relative speed to get estimated completion time of said work by each device;
# time here is relative and does not correspond to real-world units
completion_time = [w/r for w,r in zip(work_per_device, speed_per_device)]
# calculate relative time spent by the devices waiting on each other after their work is completed
idle_time = abs(min(completion_time) - max(completion_time))
# if need to compare work idle time, need to normalize to a common total work
if work_normalized:
idle_time *= (work_normalized/total_work)
return LoadBalance(dict_work_per_device, idle_time)
def round_preserved(values: list[float]):
'Round all values in a list, preserving the combined sum of values.'
# get floor of values; casting to int does it too
floored = [int(x) for x in values]
total_floored = sum(floored)
# get remainder to distribute
remainder = round(sum(values)) - total_floored
# pair values with fractional portions
fractional = [(i, x-floored[i]) for i, x in enumerate(values)]
# sort by fractional part in descending order
fractional.sort(key=lambda x: x[1], reverse=True)
# distribute the remainder
for i in range(remainder):
index = fractional[i][0]
floored[index] += 1
return floored

View File

@ -3,6 +3,8 @@ from typing import Callable
class CallbacksMP: class CallbacksMP:
ON_CLONE = "on_clone" ON_CLONE = "on_clone"
ON_DEEPCLONE_MULTIGPU = "on_deepclone_multigpu"
ON_MATCH_MULTIGPU_CLONES = "on_match_multigpu_clones"
ON_LOAD = "on_load_after" ON_LOAD = "on_load_after"
ON_DETACH = "on_detach_after" ON_DETACH = "on_detach_after"
ON_CLEANUP = "on_cleanup" ON_CLEANUP = "on_cleanup"

View File

@ -1,7 +1,9 @@
from __future__ import annotations from __future__ import annotations
import torch
import uuid import uuid
import comfy.model_management import comfy.model_management
import comfy.conds import comfy.conds
import comfy.model_patcher
import comfy.utils import comfy.utils
import comfy.hooks import comfy.hooks
import comfy.patcher_extension import comfy.patcher_extension
@ -104,6 +106,46 @@ def cleanup_additional_models(models):
if hasattr(m, 'cleanup'): if hasattr(m, 'cleanup'):
m.cleanup() m.cleanup()
def preprocess_multigpu_conds(conds: dict[str, list[dict[str]]], model: ModelPatcher, model_options: dict[str]):
'''If multigpu acceleration required, creates deepclones of ControlNets and GLIGEN per device.'''
multigpu_models: list[ModelPatcher] = model.get_additional_models_with_key("multigpu")
if len(multigpu_models) == 0:
return
extra_devices = [x.load_device for x in multigpu_models]
# handle controlnets
controlnets: set[ControlBase] = set()
for k in conds:
for kk in conds[k]:
if 'control' in kk:
controlnets.add(kk['control'])
if len(controlnets) > 0:
# first, unload all controlnet clones
for cnet in list(controlnets):
cnet_models = cnet.get_models()
for cm in cnet_models:
comfy.model_management.unload_model_and_clones(cm, unload_additional_models=True)
# next, make sure each controlnet has a deepclone for all relevant devices
for cnet in controlnets:
curr_cnet = cnet
while curr_cnet is not None:
for device in extra_devices:
if device not in curr_cnet.multigpu_clones:
curr_cnet.deepclone_multigpu(device, autoregister=True)
curr_cnet = curr_cnet.previous_controlnet
# since all device clones are now present, recreate the linked list for cloned cnets per device
for cnet in controlnets:
curr_cnet = cnet
while curr_cnet is not None:
prev_cnet = curr_cnet.previous_controlnet
for device in extra_devices:
device_cnet = curr_cnet.get_instance_for_device(device)
prev_device_cnet = None
if prev_cnet is not None:
prev_device_cnet = prev_cnet.get_instance_for_device(device)
device_cnet.set_previous_controlnet(prev_device_cnet)
curr_cnet = prev_cnet
# potentially handle gligen - since not widely used, ignored for now
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None): def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
executor = comfy.patcher_extension.WrapperExecutor.new_executor( executor = comfy.patcher_extension.WrapperExecutor.new_executor(
@ -113,14 +155,15 @@ def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None
return executor.execute(model, noise_shape, conds, model_options=model_options) return executor.execute(model, noise_shape, conds, model_options=model_options)
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None): def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
real_model: BaseModel = None model.match_multigpu_clones()
preprocess_multigpu_conds(conds, model, model_options)
models, inference_memory = get_additional_models(conds, model.model_dtype()) models, inference_memory = get_additional_models(conds, model.model_dtype())
models += get_additional_models_from_model_options(model_options) models += get_additional_models_from_model_options(model_options)
models += model.get_nested_additional_models() # TODO: does this require inference_memory update? models += model.get_nested_additional_models() # TODO: does this require inference_memory update?
memory_required = model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory memory_required = model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory
minimum_memory_required = model.memory_required([noise_shape[0]] + list(noise_shape[1:])) + inference_memory minimum_memory_required = model.memory_required([noise_shape[0]] + list(noise_shape[1:])) + inference_memory
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required) comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required)
real_model = model.model real_model: BaseModel = model.model
return real_model, conds, models return real_model, conds, models
@ -133,7 +176,7 @@ def cleanup_models(conds, models):
cleanup_additional_models(set(control_cleanup)) cleanup_additional_models(set(control_cleanup))
def prepare_model_patcher(model: 'ModelPatcher', conds, model_options: dict): def prepare_model_patcher(model: ModelPatcher, conds, model_options: dict):
''' '''
Registers hooks from conds. Registers hooks from conds.
''' '''
@ -166,3 +209,18 @@ def prepare_model_patcher(model: 'ModelPatcher', conds, model_options: dict):
comfy.patcher_extension.merge_nested_dicts(to_load_options.setdefault(wc_name, {}), model_options["transformer_options"][wc_name], comfy.patcher_extension.merge_nested_dicts(to_load_options.setdefault(wc_name, {}), model_options["transformer_options"][wc_name],
copy_dict1=False) copy_dict1=False)
return to_load_options return to_load_options
def prepare_model_patcher_multigpu_clones(model_patcher: ModelPatcher, loaded_models: list[ModelPatcher], model_options: dict):
'''
In case multigpu acceleration is enabled, prep ModelPatchers for each device.
'''
multigpu_patchers: list[ModelPatcher] = [x for x in loaded_models if x.is_multigpu_base_clone]
if len(multigpu_patchers) > 0:
multigpu_dict: dict[torch.device, ModelPatcher] = {}
multigpu_dict[model_patcher.load_device] = model_patcher
for x in multigpu_patchers:
x.hook_patches = comfy.model_patcher.create_hook_patches_clone(model_patcher.hook_patches, copy_tuples=True)
x.hook_mode = model_patcher.hook_mode # match main model's hook_mode
multigpu_dict[x.load_device] = x
model_options["multigpu_clones"] = multigpu_dict
return multigpu_patchers

View File

@ -1,4 +1,6 @@
from __future__ import annotations from __future__ import annotations
import comfy.model_management
from .k_diffusion import sampling as k_diffusion_sampling from .k_diffusion import sampling as k_diffusion_sampling
from .extra_samplers import uni_pc from .extra_samplers import uni_pc
from typing import TYPE_CHECKING, Callable, NamedTuple from typing import TYPE_CHECKING, Callable, NamedTuple
@ -18,6 +20,7 @@ import comfy.patcher_extension
import comfy.hooks import comfy.hooks
import scipy.stats import scipy.stats
import numpy import numpy
import threading
def add_area_dims(area, num_dims): def add_area_dims(area, num_dims):
@ -140,7 +143,7 @@ def can_concat_cond(c1, c2):
return cond_equal_size(c1.conditioning, c2.conditioning) return cond_equal_size(c1.conditioning, c2.conditioning)
def cond_cat(c_list): def cond_cat(c_list, device=None):
temp = {} temp = {}
for x in c_list: for x in c_list:
for k in x: for k in x:
@ -152,6 +155,8 @@ def cond_cat(c_list):
for k in temp: for k in temp:
conds = temp[k] conds = temp[k]
out[k] = conds[0].concat(conds[1:]) out[k] = conds[0].concat(conds[1:])
if device is not None and hasattr(out[k], 'to'):
out[k] = out[k].to(device)
return out return out
@ -205,7 +210,9 @@ def calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Ten
) )
return executor.execute(model, conds, x_in, timestep, model_options) return executor.execute(model, conds, x_in, timestep, model_options)
def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options): def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
if 'multigpu_clones' in model_options:
return _calc_cond_batch_multigpu(model, conds, x_in, timestep, model_options)
out_conds = [] out_conds = []
out_counts = [] out_counts = []
# separate conds by matching hooks # separate conds by matching hooks
@ -237,7 +244,7 @@ def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Te
if has_default_conds: if has_default_conds:
finalize_default_conds(model, hooked_to_run, default_conds, x_in, timestep, model_options) finalize_default_conds(model, hooked_to_run, default_conds, x_in, timestep, model_options)
model.current_patcher.prepare_state(timestep) model.current_patcher.prepare_state(timestep, model_options)
# run every hooked_to_run separately # run every hooked_to_run separately
for hooks, to_run in hooked_to_run.items(): for hooks, to_run in hooked_to_run.items():
@ -339,6 +346,190 @@ def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Te
return out_conds return out_conds
def _calc_cond_batch_multigpu(model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
out_conds = []
out_counts = []
# separate conds by matching hooks
hooked_to_run: dict[comfy.hooks.HookGroup,list[tuple[tuple,int]]] = {}
default_conds = []
has_default_conds = False
output_device = x_in.device
for i in range(len(conds)):
out_conds.append(torch.zeros_like(x_in))
out_counts.append(torch.ones_like(x_in) * 1e-37)
cond = conds[i]
default_c = []
if cond is not None:
for x in cond:
if 'default' in x:
default_c.append(x)
has_default_conds = True
continue
p = get_area_and_mult(x, x_in, timestep)
if p is None:
continue
if p.hooks is not None:
model.current_patcher.prepare_hook_patches_current_keyframe(timestep, p.hooks, model_options)
hooked_to_run.setdefault(p.hooks, list())
hooked_to_run[p.hooks] += [(p, i)]
default_conds.append(default_c)
if has_default_conds:
finalize_default_conds(model, hooked_to_run, default_conds, x_in, timestep, model_options)
model.current_patcher.prepare_state(timestep, model_options)
devices = [dev_m for dev_m in model_options['multigpu_clones'].keys()]
device_batched_hooked_to_run: dict[torch.device, list[tuple[comfy.hooks.HookGroup, tuple]]] = {}
total_conds = 0
for to_run in hooked_to_run.values():
total_conds += len(to_run)
conds_per_device = max(1, math.ceil(total_conds//len(devices)))
index_device = 0
current_device = devices[index_device]
# run every hooked_to_run separately
for hooks, to_run in hooked_to_run.items():
while len(to_run) > 0:
current_device = devices[index_device % len(devices)]
batched_to_run = device_batched_hooked_to_run.setdefault(current_device, [])
# keep track of conds currently scheduled onto this device
batched_to_run_length = 0
for btr in batched_to_run:
batched_to_run_length += len(btr[1])
first = to_run[0]
first_shape = first[0][0].shape
to_batch_temp = []
# make sure not over conds_per_device limit when creating temp batch
for x in range(len(to_run)):
if can_concat_cond(to_run[x][0], first[0]) and len(to_batch_temp) < (conds_per_device - batched_to_run_length):
to_batch_temp += [x]
to_batch_temp.reverse()
to_batch = to_batch_temp[:1]
free_memory = model_management.get_free_memory(current_device)
for i in range(1, len(to_batch_temp) + 1):
batch_amount = to_batch_temp[:len(to_batch_temp)//i]
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
if model.memory_required(input_shape) * 1.5 < free_memory:
to_batch = batch_amount
break
conds_to_batch = []
for x in to_batch:
conds_to_batch.append(to_run.pop(x))
batched_to_run_length += len(conds_to_batch)
batched_to_run.append((hooks, conds_to_batch))
if batched_to_run_length >= conds_per_device:
index_device += 1
thread_result = collections.namedtuple('thread_result', ['output', 'mult', 'area', 'batch_chunks', 'cond_or_uncond'])
def _handle_batch(device: torch.device, batch_tuple: tuple[comfy.hooks.HookGroup, tuple], results: list[thread_result]):
model_current: BaseModel = model_options["multigpu_clones"][device].model
# run every hooked_to_run separately
with torch.no_grad():
for hooks, to_batch in batch_tuple:
input_x = []
mult = []
c = []
cond_or_uncond = []
uuids = []
area = []
control: ControlBase = None
patches = None
for x in to_batch:
o = x
p = o[0]
input_x.append(p.input_x)
mult.append(p.mult)
c.append(p.conditioning)
area.append(p.area)
cond_or_uncond.append(o[1])
uuids.append(p.uuid)
control = p.control
patches = p.patches
batch_chunks = len(cond_or_uncond)
input_x = torch.cat(input_x).to(device)
c = cond_cat(c, device=device)
timestep_ = torch.cat([timestep.to(device)] * batch_chunks)
transformer_options = model_current.current_patcher.apply_hooks(hooks=hooks)
if 'transformer_options' in model_options:
transformer_options = comfy.patcher_extension.merge_nested_dicts(transformer_options,
model_options['transformer_options'],
copy_dict1=False)
if patches is not None:
# TODO: replace with merge_nested_dicts function
if "patches" in transformer_options:
cur_patches = transformer_options["patches"].copy()
for p in patches:
if p in cur_patches:
cur_patches[p] = cur_patches[p] + patches[p]
else:
cur_patches[p] = patches[p]
transformer_options["patches"] = cur_patches
else:
transformer_options["patches"] = patches
transformer_options["cond_or_uncond"] = cond_or_uncond[:]
transformer_options["uuids"] = uuids[:]
transformer_options["sigmas"] = timestep
transformer_options["sample_sigmas"] = transformer_options["sample_sigmas"].to(device)
transformer_options["multigpu_thread_device"] = device
cast_transformer_options(transformer_options, device=device)
c['transformer_options'] = transformer_options
if control is not None:
device_control = control.get_instance_for_device(device)
c['control'] = device_control.get_control(input_x, timestep_, c, len(cond_or_uncond), transformer_options)
if 'model_function_wrapper' in model_options:
output = model_options['model_function_wrapper'](model_current.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).to(output_device).chunk(batch_chunks)
else:
output = model_current.apply_model(input_x, timestep_, **c).to(output_device).chunk(batch_chunks)
results.append(thread_result(output, mult, area, batch_chunks, cond_or_uncond))
results: list[thread_result] = []
threads: list[threading.Thread] = []
for device, batch_tuple in device_batched_hooked_to_run.items():
new_thread = threading.Thread(target=_handle_batch, args=(device, batch_tuple, results))
threads.append(new_thread)
new_thread.start()
for thread in threads:
thread.join()
for output, mult, area, batch_chunks, cond_or_uncond in results:
for o in range(batch_chunks):
cond_index = cond_or_uncond[o]
a = area[o]
if a is None:
out_conds[cond_index] += output[o] * mult[o]
out_counts[cond_index] += mult[o]
else:
out_c = out_conds[cond_index]
out_cts = out_counts[cond_index]
dims = len(a) // 2
for i in range(dims):
out_c = out_c.narrow(i + 2, a[i + dims], a[i])
out_cts = out_cts.narrow(i + 2, a[i + dims], a[i])
out_c += output[o] * mult[o]
out_cts += mult[o]
for i in range(len(out_conds)):
out_conds[i] /= out_counts[i]
return out_conds
def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): #TODO: remove def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): #TODO: remove
logging.warning("WARNING: The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.") logging.warning("WARNING: The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.")
return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options)) return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options))
@ -636,6 +827,8 @@ def pre_run_control(model, conds):
percent_to_timestep_function = lambda a: s.percent_to_sigma(a) percent_to_timestep_function = lambda a: s.percent_to_sigma(a)
if 'control' in x: if 'control' in x:
x['control'].pre_run(model, percent_to_timestep_function) x['control'].pre_run(model, percent_to_timestep_function)
for device_cnet in x['control'].multigpu_clones.values():
device_cnet.pre_run(model, percent_to_timestep_function)
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func): def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
cond_cnets = [] cond_cnets = []
@ -878,7 +1071,9 @@ def cast_to_load_options(model_options: dict[str], device=None, dtype=None):
to_load_options = model_options.get("to_load_options", None) to_load_options = model_options.get("to_load_options", None)
if to_load_options is None: if to_load_options is None:
return return
cast_transformer_options(to_load_options, device, dtype)
def cast_transformer_options(transformer_options: dict[str], device=None, dtype=None):
casts = [] casts = []
if device is not None: if device is not None:
casts.append(device) casts.append(device)
@ -887,18 +1082,17 @@ def cast_to_load_options(model_options: dict[str], device=None, dtype=None):
# if nothing to apply, do nothing # if nothing to apply, do nothing
if len(casts) == 0: if len(casts) == 0:
return return
# try to call .to on patches # try to call .to on patches
if "patches" in to_load_options: if "patches" in transformer_options:
patches = to_load_options["patches"] patches = transformer_options["patches"]
for name in patches: for name in patches:
patch_list = patches[name] patch_list = patches[name]
for i in range(len(patch_list)): for i in range(len(patch_list)):
if hasattr(patch_list[i], "to"): if hasattr(patch_list[i], "to"):
for cast in casts: for cast in casts:
patch_list[i] = patch_list[i].to(cast) patch_list[i] = patch_list[i].to(cast)
if "patches_replace" in to_load_options: if "patches_replace" in transformer_options:
patches = to_load_options["patches_replace"] patches = transformer_options["patches_replace"]
for name in patches: for name in patches:
patch_list = patches[name] patch_list = patches[name]
for k in patch_list: for k in patch_list:
@ -908,8 +1102,8 @@ def cast_to_load_options(model_options: dict[str], device=None, dtype=None):
# try to call .to on any wrappers/callbacks # try to call .to on any wrappers/callbacks
wrappers_and_callbacks = ["wrappers", "callbacks"] wrappers_and_callbacks = ["wrappers", "callbacks"]
for wc_name in wrappers_and_callbacks: for wc_name in wrappers_and_callbacks:
if wc_name in to_load_options: if wc_name in transformer_options:
wc: dict[str, list] = to_load_options[wc_name] wc: dict[str, list] = transformer_options[wc_name]
for wc_dict in wc.values(): for wc_dict in wc.values():
for wc_list in wc_dict.values(): for wc_list in wc_dict.values():
for i in range(len(wc_list)): for i in range(len(wc_list)):
@ -917,7 +1111,6 @@ def cast_to_load_options(model_options: dict[str], device=None, dtype=None):
for cast in casts: for cast in casts:
wc_list[i] = wc_list[i].to(cast) wc_list[i] = wc_list[i].to(cast)
class CFGGuider: class CFGGuider:
def __init__(self, model_patcher: ModelPatcher): def __init__(self, model_patcher: ModelPatcher):
self.model_patcher = model_patcher self.model_patcher = model_patcher
@ -963,6 +1156,8 @@ class CFGGuider:
self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds, self.model_options) self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds, self.model_options)
device = self.model_patcher.load_device device = self.model_patcher.load_device
multigpu_patchers = comfy.sampler_helpers.prepare_model_patcher_multigpu_clones(self.model_patcher, self.loaded_models, self.model_options)
if denoise_mask is not None: if denoise_mask is not None:
denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device) denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device)
@ -973,9 +1168,13 @@ class CFGGuider:
try: try:
self.model_patcher.pre_run() self.model_patcher.pre_run()
for multigpu_patcher in multigpu_patchers:
multigpu_patcher.pre_run()
output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed) output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
finally: finally:
self.model_patcher.cleanup() self.model_patcher.cleanup()
for multigpu_patcher in multigpu_patchers:
multigpu_patcher.cleanup()
comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models) comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models)
del self.inner_model del self.inner_model

View File

@ -0,0 +1,86 @@
from __future__ import annotations
from inspect import cleandoc
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher
import comfy.multigpu
class MultiGPUWorkUnitsNode:
"""
Prepares model to have sampling accelerated via splitting work units.
Should be placed after nodes that modify the model object itself, such as compile or attention-switch nodes.
Other than those exceptions, this node can be placed in any order.
"""
NodeId = "MultiGPU_WorkUnits"
NodeName = "MultiGPU Work Units"
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"model": ("MODEL",),
"max_gpus" : ("INT", {"default": 8, "min": 1, "step": 1}),
},
"optional": {
"gpu_options": ("GPU_OPTIONS",)
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "init_multigpu"
CATEGORY = "advanced/multigpu"
DESCRIPTION = cleandoc(__doc__)
def init_multigpu(self, model: ModelPatcher, max_gpus: int, gpu_options: comfy.multigpu.GPUOptionsGroup=None):
model = comfy.multigpu.create_multigpu_deepclones(model, max_gpus, gpu_options, reuse_loaded=True)
return (model,)
class MultiGPUOptionsNode:
"""
Select the relative speed of GPUs in the special case they have significantly different performance from one another.
"""
NodeId = "MultiGPU_Options"
NodeName = "MultiGPU Options"
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"device_index": ("INT", {"default": 0, "min": 0, "max": 64}),
"relative_speed": ("FLOAT", {"default": 1.0, "min": 0.0, "step": 0.01})
},
"optional": {
"gpu_options": ("GPU_OPTIONS",)
}
}
RETURN_TYPES = ("GPU_OPTIONS",)
FUNCTION = "create_gpu_options"
CATEGORY = "advanced/multigpu"
DESCRIPTION = cleandoc(__doc__)
def create_gpu_options(self, device_index: int, relative_speed: float, gpu_options: comfy.multigpu.GPUOptionsGroup=None):
if not gpu_options:
gpu_options = comfy.multigpu.GPUOptionsGroup()
gpu_options.clone()
opt = comfy.multigpu.GPUOptions(device_index=device_index, relative_speed=relative_speed)
gpu_options.add(opt)
return (gpu_options,)
node_list = [
MultiGPUWorkUnitsNode,
MultiGPUOptionsNode
]
NODE_CLASS_MAPPINGS = {}
NODE_DISPLAY_NAME_MAPPINGS = {}
for node in node_list:
NODE_CLASS_MAPPINGS[node.NodeId] = node
NODE_DISPLAY_NAME_MAPPINGS[node.NodeId] = node.NodeName

View File

@ -2270,6 +2270,7 @@ def init_builtin_extra_nodes():
"nodes_mahiro.py", "nodes_mahiro.py",
"nodes_lt.py", "nodes_lt.py",
"nodes_hooks.py", "nodes_hooks.py",
"nodes_multigpu.py",
"nodes_load_3d.py", "nodes_load_3d.py",
"nodes_cosmos.py", "nodes_cosmos.py",
"nodes_video.py", "nodes_video.py",