mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-04-12 18:33:35 +00:00
Merge ccd5c01e5a
into 22ad513c72
This commit is contained in:
commit
13ffde9faa
@ -49,7 +49,7 @@ parser.add_argument("--temp-directory", type=str, default=None, help="Set the Co
|
||||
parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory. Overrides --base-directory.")
|
||||
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
|
||||
parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
|
||||
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
|
||||
parser.add_argument("--cuda-device", type=str, default=None, metavar="DEVICE_ID", help="Set the ids of cuda devices this instance will use.")
|
||||
cm_group = parser.add_mutually_exclusive_group()
|
||||
cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
|
||||
cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")
|
||||
|
@ -15,13 +15,14 @@
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import torch
|
||||
from enum import Enum
|
||||
import math
|
||||
import os
|
||||
import logging
|
||||
import copy
|
||||
import comfy.utils
|
||||
import comfy.model_management
|
||||
import comfy.model_detection
|
||||
@ -36,7 +37,7 @@ import comfy.cldm.mmdit
|
||||
import comfy.ldm.hydit.controlnet
|
||||
import comfy.ldm.flux.controlnet
|
||||
import comfy.cldm.dit_embedder
|
||||
from typing import TYPE_CHECKING
|
||||
from typing import TYPE_CHECKING, Union
|
||||
if TYPE_CHECKING:
|
||||
from comfy.hooks import HookGroup
|
||||
|
||||
@ -63,6 +64,18 @@ class StrengthType(Enum):
|
||||
CONSTANT = 1
|
||||
LINEAR_UP = 2
|
||||
|
||||
class ControlIsolation:
|
||||
'''Temporarily set a ControlBase object's previous_controlnet to None to prevent cascading calls.'''
|
||||
def __init__(self, control: ControlBase):
|
||||
self.control = control
|
||||
self.orig_previous_controlnet = control.previous_controlnet
|
||||
|
||||
def __enter__(self):
|
||||
self.control.previous_controlnet = None
|
||||
|
||||
def __exit__(self, *args):
|
||||
self.control.previous_controlnet = self.orig_previous_controlnet
|
||||
|
||||
class ControlBase:
|
||||
def __init__(self):
|
||||
self.cond_hint_original = None
|
||||
@ -76,7 +89,7 @@ class ControlBase:
|
||||
self.compression_ratio = 8
|
||||
self.upscale_algorithm = 'nearest-exact'
|
||||
self.extra_args = {}
|
||||
self.previous_controlnet = None
|
||||
self.previous_controlnet: Union[ControlBase, None] = None
|
||||
self.extra_conds = []
|
||||
self.strength_type = StrengthType.CONSTANT
|
||||
self.concat_mask = False
|
||||
@ -84,6 +97,7 @@ class ControlBase:
|
||||
self.extra_concat = None
|
||||
self.extra_hooks: HookGroup = None
|
||||
self.preprocess_image = lambda a: a
|
||||
self.multigpu_clones: dict[torch.device, ControlBase] = {}
|
||||
|
||||
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None, extra_concat=[]):
|
||||
self.cond_hint_original = cond_hint
|
||||
@ -110,17 +124,38 @@ class ControlBase:
|
||||
def cleanup(self):
|
||||
if self.previous_controlnet is not None:
|
||||
self.previous_controlnet.cleanup()
|
||||
|
||||
for device_cnet in self.multigpu_clones.values():
|
||||
with ControlIsolation(device_cnet):
|
||||
device_cnet.cleanup()
|
||||
self.cond_hint = None
|
||||
self.extra_concat = None
|
||||
self.timestep_range = None
|
||||
|
||||
def get_models(self):
|
||||
out = []
|
||||
for device_cnet in self.multigpu_clones.values():
|
||||
out += device_cnet.get_models_only_self()
|
||||
if self.previous_controlnet is not None:
|
||||
out += self.previous_controlnet.get_models()
|
||||
return out
|
||||
|
||||
def get_models_only_self(self):
|
||||
'Calls get_models, but temporarily sets previous_controlnet to None.'
|
||||
with ControlIsolation(self):
|
||||
return self.get_models()
|
||||
|
||||
def get_instance_for_device(self, device):
|
||||
'Returns instance of this Control object intended for selected device.'
|
||||
return self.multigpu_clones.get(device, self)
|
||||
|
||||
def deepclone_multigpu(self, load_device, autoregister=False):
|
||||
'''
|
||||
Create deep clone of Control object where model(s) is set to other devices.
|
||||
|
||||
When autoregister is set to True, the deep clone is also added to multigpu_clones dict.
|
||||
'''
|
||||
raise NotImplementedError("Classes inheriting from ControlBase should define their own deepclone_multigpu funtion.")
|
||||
|
||||
def get_extra_hooks(self):
|
||||
out = []
|
||||
if self.extra_hooks is not None:
|
||||
@ -129,7 +164,7 @@ class ControlBase:
|
||||
out += self.previous_controlnet.get_extra_hooks()
|
||||
return out
|
||||
|
||||
def copy_to(self, c):
|
||||
def copy_to(self, c: ControlBase):
|
||||
c.cond_hint_original = self.cond_hint_original
|
||||
c.strength = self.strength
|
||||
c.timestep_percent_range = self.timestep_percent_range
|
||||
@ -280,6 +315,14 @@ class ControlNet(ControlBase):
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
def deepclone_multigpu(self, load_device, autoregister=False):
|
||||
c = self.copy()
|
||||
c.control_model = copy.deepcopy(c.control_model)
|
||||
c.control_model_wrapped = comfy.model_patcher.ModelPatcher(c.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
|
||||
if autoregister:
|
||||
self.multigpu_clones[load_device] = c
|
||||
return c
|
||||
|
||||
def get_models(self):
|
||||
out = super().get_models()
|
||||
out.append(self.control_model_wrapped)
|
||||
@ -804,6 +847,14 @@ class T2IAdapter(ControlBase):
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
def deepclone_multigpu(self, load_device, autoregister=False):
|
||||
c = self.copy()
|
||||
c.t2i_model = copy.deepcopy(c.t2i_model)
|
||||
c.device = load_device
|
||||
if autoregister:
|
||||
self.multigpu_clones[load_device] = c
|
||||
return c
|
||||
|
||||
def load_t2i_adapter(t2i_data, model_options={}): #TODO: model_options
|
||||
compression_ratio = 8
|
||||
upscale_algorithm = 'nearest-exact'
|
||||
|
@ -15,6 +15,7 @@
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
import psutil
|
||||
import logging
|
||||
@ -26,6 +27,10 @@ import platform
|
||||
import weakref
|
||||
import gc
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
if TYPE_CHECKING:
|
||||
from comfy.model_patcher import ModelPatcher
|
||||
|
||||
class VRAMState(Enum):
|
||||
DISABLED = 0 #No vram present: no need to move models to vram
|
||||
NO_VRAM = 1 #Very low vram: enable all the options to save vram
|
||||
@ -171,6 +176,25 @@ def get_torch_device():
|
||||
else:
|
||||
return torch.device(torch.cuda.current_device())
|
||||
|
||||
def get_all_torch_devices(exclude_current=False):
|
||||
global cpu_state
|
||||
devices = []
|
||||
if cpu_state == CPUState.GPU:
|
||||
if is_nvidia():
|
||||
for i in range(torch.cuda.device_count()):
|
||||
devices.append(torch.device(i))
|
||||
elif is_intel_xpu():
|
||||
for i in range(torch.xpu.device_count()):
|
||||
devices.append(torch.device(i))
|
||||
elif is_ascend_npu():
|
||||
for i in range(torch.npu.device_count()):
|
||||
devices.append(torch.device(i))
|
||||
else:
|
||||
devices.append(get_torch_device())
|
||||
if exclude_current:
|
||||
devices.remove(get_torch_device())
|
||||
return devices
|
||||
|
||||
def get_total_memory(dev=None, torch_total_too=False):
|
||||
global directml_enabled
|
||||
if dev is None:
|
||||
@ -382,9 +406,13 @@ try:
|
||||
logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
|
||||
except:
|
||||
logging.warning("Could not pick default device.")
|
||||
try:
|
||||
for device in get_all_torch_devices(exclude_current=True):
|
||||
logging.info("Device: {}".format(get_torch_device_name(device)))
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
current_loaded_models = []
|
||||
current_loaded_models: list[LoadedModel] = []
|
||||
|
||||
def module_size(module):
|
||||
module_mem = 0
|
||||
@ -395,7 +423,7 @@ def module_size(module):
|
||||
return module_mem
|
||||
|
||||
class LoadedModel:
|
||||
def __init__(self, model):
|
||||
def __init__(self, model: ModelPatcher):
|
||||
self._set_model(model)
|
||||
self.device = model.load_device
|
||||
self.real_model = None
|
||||
@ -403,7 +431,7 @@ class LoadedModel:
|
||||
self.model_finalizer = None
|
||||
self._patcher_finalizer = None
|
||||
|
||||
def _set_model(self, model):
|
||||
def _set_model(self, model: ModelPatcher):
|
||||
self._model = weakref.ref(model)
|
||||
if model.parent is not None:
|
||||
self._parent_model = weakref.ref(model.parent)
|
||||
@ -1246,6 +1274,31 @@ def soft_empty_cache(force=False):
|
||||
def unload_all_models():
|
||||
free_memory(1e30, get_torch_device())
|
||||
|
||||
def unload_model_and_clones(model: ModelPatcher, unload_additional_models=True, all_devices=False):
|
||||
'Unload only model and its clones - primarily for multigpu cloning purposes.'
|
||||
initial_keep_loaded: list[LoadedModel] = current_loaded_models.copy()
|
||||
additional_models = []
|
||||
if unload_additional_models:
|
||||
additional_models = model.get_nested_additional_models()
|
||||
keep_loaded = []
|
||||
for loaded_model in initial_keep_loaded:
|
||||
if loaded_model.model is not None:
|
||||
if model.clone_base_uuid == loaded_model.model.clone_base_uuid:
|
||||
continue
|
||||
# check additional models if they are a match
|
||||
skip = False
|
||||
for add_model in additional_models:
|
||||
if add_model.clone_base_uuid == loaded_model.model.clone_base_uuid:
|
||||
skip = True
|
||||
break
|
||||
if skip:
|
||||
continue
|
||||
keep_loaded.append(loaded_model)
|
||||
if not all_devices:
|
||||
free_memory(1e30, get_torch_device(), keep_loaded)
|
||||
else:
|
||||
for device in get_all_torch_devices():
|
||||
free_memory(1e30, device, keep_loaded)
|
||||
|
||||
#TODO: might be cleaner to put this somewhere else
|
||||
import threading
|
||||
|
@ -84,12 +84,15 @@ def set_model_options_pre_cfg_function(model_options, pre_cfg_function, disable_
|
||||
def create_model_options_clone(orig_model_options: dict):
|
||||
return comfy.patcher_extension.copy_nested_dicts(orig_model_options)
|
||||
|
||||
def create_hook_patches_clone(orig_hook_patches):
|
||||
def create_hook_patches_clone(orig_hook_patches, copy_tuples=False):
|
||||
new_hook_patches = {}
|
||||
for hook_ref in orig_hook_patches:
|
||||
new_hook_patches[hook_ref] = {}
|
||||
for k in orig_hook_patches[hook_ref]:
|
||||
new_hook_patches[hook_ref][k] = orig_hook_patches[hook_ref][k][:]
|
||||
if copy_tuples:
|
||||
for i in range(len(new_hook_patches[hook_ref][k])):
|
||||
new_hook_patches[hook_ref][k][i] = tuple(new_hook_patches[hook_ref][k][i])
|
||||
return new_hook_patches
|
||||
|
||||
def wipe_lowvram_weight(m):
|
||||
@ -240,6 +243,9 @@ class ModelPatcher:
|
||||
self.is_clip = False
|
||||
self.hook_mode = comfy.hooks.EnumHookMode.MaxSpeed
|
||||
|
||||
self.is_multigpu_base_clone = False
|
||||
self.clone_base_uuid = uuid.uuid4()
|
||||
|
||||
if not hasattr(self.model, 'model_loaded_weight_memory'):
|
||||
self.model.model_loaded_weight_memory = 0
|
||||
|
||||
@ -318,18 +324,92 @@ class ModelPatcher:
|
||||
n.is_clip = self.is_clip
|
||||
n.hook_mode = self.hook_mode
|
||||
|
||||
n.is_multigpu_base_clone = self.is_multigpu_base_clone
|
||||
n.clone_base_uuid = self.clone_base_uuid
|
||||
|
||||
for callback in self.get_all_callbacks(CallbacksMP.ON_CLONE):
|
||||
callback(self, n)
|
||||
return n
|
||||
|
||||
def deepclone_multigpu(self, new_load_device=None, models_cache: dict[uuid.UUID,ModelPatcher]=None):
|
||||
logging.info(f"Creating deepclone of {self.model.__class__.__name__} for {new_load_device if new_load_device else self.load_device}.")
|
||||
comfy.model_management.unload_model_and_clones(self)
|
||||
n = self.clone()
|
||||
# set load device, if present
|
||||
if new_load_device is not None:
|
||||
n.load_device = new_load_device
|
||||
# unlike for normal clone, backup dicts that shared same ref should not;
|
||||
# otherwise, patchers that have deep copies of base models will erroneously influence each other.
|
||||
n.backup = copy.deepcopy(n.backup)
|
||||
n.object_patches_backup = copy.deepcopy(n.object_patches_backup)
|
||||
n.hook_backup = copy.deepcopy(n.hook_backup)
|
||||
n.model = copy.deepcopy(n.model)
|
||||
# multigpu clone should not have multigpu additional_models entry
|
||||
n.remove_additional_models("multigpu")
|
||||
# multigpu_clone all stored additional_models; make sure circular references are properly handled
|
||||
if models_cache is None:
|
||||
models_cache = {}
|
||||
for key, model_list in n.additional_models.items():
|
||||
for i in range(len(model_list)):
|
||||
add_model = n.additional_models[key][i]
|
||||
if add_model.clone_base_uuid not in models_cache:
|
||||
models_cache[add_model.clone_base_uuid] = add_model.deepclone_multigpu(new_load_device=new_load_device, models_cache=models_cache)
|
||||
n.additional_models[key][i] = models_cache[add_model.clone_base_uuid]
|
||||
for callback in self.get_all_callbacks(CallbacksMP.ON_DEEPCLONE_MULTIGPU):
|
||||
callback(self, n)
|
||||
return n
|
||||
|
||||
def match_multigpu_clones(self):
|
||||
multigpu_models = self.get_additional_models_with_key("multigpu")
|
||||
if len(multigpu_models) > 0:
|
||||
new_multigpu_models = []
|
||||
for mm in multigpu_models:
|
||||
# clone main model, but bring over relevant props from existing multigpu clone
|
||||
n = self.clone()
|
||||
n.load_device = mm.load_device
|
||||
n.backup = mm.backup
|
||||
n.object_patches_backup = mm.object_patches_backup
|
||||
n.hook_backup = mm.hook_backup
|
||||
n.model = mm.model
|
||||
n.is_multigpu_base_clone = mm.is_multigpu_base_clone
|
||||
n.remove_additional_models("multigpu")
|
||||
orig_additional_models: dict[str, list[ModelPatcher]] = comfy.patcher_extension.copy_nested_dicts(n.additional_models)
|
||||
n.additional_models = comfy.patcher_extension.copy_nested_dicts(mm.additional_models)
|
||||
# figure out which additional models are not present in multigpu clone
|
||||
models_cache = {}
|
||||
for mm_add_model in mm.get_additional_models():
|
||||
models_cache[mm_add_model.clone_base_uuid] = mm_add_model
|
||||
remove_models_uuids = set(list(models_cache.keys()))
|
||||
for key, model_list in orig_additional_models.items():
|
||||
for orig_add_model in model_list:
|
||||
if orig_add_model.clone_base_uuid not in models_cache:
|
||||
models_cache[orig_add_model.clone_base_uuid] = orig_add_model.deepclone_multigpu(new_load_device=n.load_device, models_cache=models_cache)
|
||||
existing_list = n.get_additional_models_with_key(key)
|
||||
existing_list.append(models_cache[orig_add_model.clone_base_uuid])
|
||||
n.set_additional_models(key, existing_list)
|
||||
if orig_add_model.clone_base_uuid in remove_models_uuids:
|
||||
remove_models_uuids.remove(orig_add_model.clone_base_uuid)
|
||||
# remove duplicate additional models
|
||||
for key, model_list in n.additional_models.items():
|
||||
new_model_list = [x for x in model_list if x.clone_base_uuid not in remove_models_uuids]
|
||||
n.set_additional_models(key, new_model_list)
|
||||
for callback in self.get_all_callbacks(CallbacksMP.ON_MATCH_MULTIGPU_CLONES):
|
||||
callback(self, n)
|
||||
new_multigpu_models.append(n)
|
||||
self.set_additional_models("multigpu", new_multigpu_models)
|
||||
|
||||
def is_clone(self, other):
|
||||
if hasattr(other, 'model') and self.model is other.model:
|
||||
return True
|
||||
return False
|
||||
|
||||
def clone_has_same_weights(self, clone: 'ModelPatcher'):
|
||||
if not self.is_clone(clone):
|
||||
return False
|
||||
def clone_has_same_weights(self, clone: ModelPatcher, allow_multigpu=False):
|
||||
if allow_multigpu:
|
||||
if self.clone_base_uuid != clone.clone_base_uuid:
|
||||
return False
|
||||
else:
|
||||
if not self.is_clone(clone):
|
||||
return False
|
||||
|
||||
if self.current_hooks != clone.current_hooks:
|
||||
return False
|
||||
@ -929,7 +1009,7 @@ class ModelPatcher:
|
||||
return self.additional_models.get(key, [])
|
||||
|
||||
def get_additional_models(self):
|
||||
all_models = []
|
||||
all_models: list[ModelPatcher] = []
|
||||
for models in self.additional_models.values():
|
||||
all_models.extend(models)
|
||||
return all_models
|
||||
@ -983,9 +1063,13 @@ class ModelPatcher:
|
||||
for callback in self.get_all_callbacks(CallbacksMP.ON_PRE_RUN):
|
||||
callback(self)
|
||||
|
||||
def prepare_state(self, timestep):
|
||||
def prepare_state(self, timestep, model_options, ignore_multigpu=False):
|
||||
for callback in self.get_all_callbacks(CallbacksMP.ON_PREPARE_STATE):
|
||||
callback(self, timestep)
|
||||
callback(self, timestep, model_options, ignore_multigpu)
|
||||
if not ignore_multigpu and "multigpu_clones" in model_options:
|
||||
for p in model_options["multigpu_clones"].values():
|
||||
p: ModelPatcher
|
||||
p.prepare_state(timestep, model_options, ignore_multigpu=True)
|
||||
|
||||
def restore_hook_patches(self):
|
||||
if self.hook_patches_backup is not None:
|
||||
@ -998,12 +1082,18 @@ class ModelPatcher:
|
||||
def prepare_hook_patches_current_keyframe(self, t: torch.Tensor, hook_group: comfy.hooks.HookGroup, model_options: dict[str]):
|
||||
curr_t = t[0]
|
||||
reset_current_hooks = False
|
||||
multigpu_kf_changed_cache = None
|
||||
transformer_options = model_options.get("transformer_options", {})
|
||||
for hook in hook_group.hooks:
|
||||
changed = hook.hook_keyframe.prepare_current_keyframe(curr_t=curr_t, transformer_options=transformer_options)
|
||||
# if keyframe changed, remove any cached HookGroups that contain hook with the same hook_ref;
|
||||
# this will cause the weights to be recalculated when sampling
|
||||
if changed:
|
||||
# cache changed for multigpu usage
|
||||
if "multigpu_clones" in model_options:
|
||||
if multigpu_kf_changed_cache is None:
|
||||
multigpu_kf_changed_cache = []
|
||||
multigpu_kf_changed_cache.append(hook)
|
||||
# reset current_hooks if contains hook that changed
|
||||
if self.current_hooks is not None:
|
||||
for current_hook in self.current_hooks.hooks:
|
||||
@ -1015,6 +1105,28 @@ class ModelPatcher:
|
||||
self.cached_hook_patches.pop(cached_group)
|
||||
if reset_current_hooks:
|
||||
self.patch_hooks(None)
|
||||
if "multigpu_clones" in model_options:
|
||||
for p in model_options["multigpu_clones"].values():
|
||||
p: ModelPatcher
|
||||
p._handle_changed_hook_keyframes(multigpu_kf_changed_cache)
|
||||
|
||||
def _handle_changed_hook_keyframes(self, kf_changed_cache: list[comfy.hooks.Hook]):
|
||||
'Used to handle multigpu behavior inside prepare_hook_patches_current_keyframe.'
|
||||
if kf_changed_cache is None:
|
||||
return
|
||||
reset_current_hooks = False
|
||||
# reset current_hooks if contains hook that changed
|
||||
for hook in kf_changed_cache:
|
||||
if self.current_hooks is not None:
|
||||
for current_hook in self.current_hooks.hooks:
|
||||
if current_hook == hook:
|
||||
reset_current_hooks = True
|
||||
break
|
||||
for cached_group in list(self.cached_hook_patches.keys()):
|
||||
if cached_group.contains(hook):
|
||||
self.cached_hook_patches.pop(cached_group)
|
||||
if reset_current_hooks:
|
||||
self.patch_hooks(None)
|
||||
|
||||
def register_all_hook_patches(self, hooks: comfy.hooks.HookGroup, target_dict: dict[str], model_options: dict=None,
|
||||
registered: comfy.hooks.HookGroup = None):
|
||||
|
167
comfy/multigpu.py
Normal file
167
comfy/multigpu.py
Normal file
@ -0,0 +1,167 @@
|
||||
from __future__ import annotations
|
||||
import torch
|
||||
import logging
|
||||
|
||||
from collections import namedtuple
|
||||
from typing import TYPE_CHECKING
|
||||
if TYPE_CHECKING:
|
||||
from comfy.model_patcher import ModelPatcher
|
||||
import comfy.utils
|
||||
import comfy.patcher_extension
|
||||
import comfy.model_management
|
||||
|
||||
|
||||
class GPUOptions:
|
||||
def __init__(self, device_index: int, relative_speed: float):
|
||||
self.device_index = device_index
|
||||
self.relative_speed = relative_speed
|
||||
|
||||
def clone(self):
|
||||
return GPUOptions(self.device_index, self.relative_speed)
|
||||
|
||||
def create_dict(self):
|
||||
return {
|
||||
"relative_speed": self.relative_speed
|
||||
}
|
||||
|
||||
class GPUOptionsGroup:
|
||||
def __init__(self):
|
||||
self.options: dict[int, GPUOptions] = {}
|
||||
|
||||
def add(self, info: GPUOptions):
|
||||
self.options[info.device_index] = info
|
||||
|
||||
def clone(self):
|
||||
c = GPUOptionsGroup()
|
||||
for opt in self.options.values():
|
||||
c.add(opt)
|
||||
return c
|
||||
|
||||
def register(self, model: ModelPatcher):
|
||||
opts_dict = {}
|
||||
# get devices that are valid for this model
|
||||
devices: list[torch.device] = [model.load_device]
|
||||
for extra_model in model.get_additional_models_with_key("multigpu"):
|
||||
extra_model: ModelPatcher
|
||||
devices.append(extra_model.load_device)
|
||||
# create dictionary with actual device mapped to its GPUOptions
|
||||
device_opts_list: list[GPUOptions] = []
|
||||
for device in devices:
|
||||
device_opts = self.options.get(device.index, GPUOptions(device_index=device.index, relative_speed=1.0))
|
||||
opts_dict[device] = device_opts.create_dict()
|
||||
device_opts_list.append(device_opts)
|
||||
# make relative_speed relative to 1.0
|
||||
min_speed = min([x.relative_speed for x in device_opts_list])
|
||||
for value in opts_dict.values():
|
||||
value['relative_speed'] /= min_speed
|
||||
model.model_options['multigpu_options'] = opts_dict
|
||||
|
||||
|
||||
def create_multigpu_deepclones(model: ModelPatcher, max_gpus: int, gpu_options: GPUOptionsGroup=None, reuse_loaded=False):
|
||||
'Prepare ModelPatcher to contain deepclones of its BaseModel and related properties.'
|
||||
model = model.clone()
|
||||
# check if multigpu is already prepared - get the load devices from them if possible to exclude
|
||||
skip_devices = set()
|
||||
multigpu_models = model.get_additional_models_with_key("multigpu")
|
||||
if len(multigpu_models) > 0:
|
||||
for mm in multigpu_models:
|
||||
skip_devices.add(mm.load_device)
|
||||
skip_devices = list(skip_devices)
|
||||
|
||||
full_extra_devices = comfy.model_management.get_all_torch_devices(exclude_current=True)
|
||||
limit_extra_devices = full_extra_devices[:max_gpus-1]
|
||||
extra_devices = limit_extra_devices.copy()
|
||||
# exclude skipped devices
|
||||
for skip in skip_devices:
|
||||
if skip in extra_devices:
|
||||
extra_devices.remove(skip)
|
||||
# create new deepclones
|
||||
if len(extra_devices) > 0:
|
||||
for device in extra_devices:
|
||||
device_patcher = None
|
||||
if reuse_loaded:
|
||||
# check if there are any ModelPatchers currently loaded that could be referenced here after a clone
|
||||
loaded_models: list[ModelPatcher] = comfy.model_management.loaded_models()
|
||||
for lm in loaded_models:
|
||||
if lm.model is not None and lm.clone_base_uuid == model.clone_base_uuid and lm.load_device == device:
|
||||
device_patcher = lm.clone()
|
||||
logging.info(f"Reusing loaded deepclone of {device_patcher.model.__class__.__name__} for {device}")
|
||||
break
|
||||
if device_patcher is None:
|
||||
device_patcher = model.deepclone_multigpu(new_load_device=device)
|
||||
device_patcher.is_multigpu_base_clone = True
|
||||
multigpu_models = model.get_additional_models_with_key("multigpu")
|
||||
multigpu_models.append(device_patcher)
|
||||
model.set_additional_models("multigpu", multigpu_models)
|
||||
model.match_multigpu_clones()
|
||||
if gpu_options is None:
|
||||
gpu_options = GPUOptionsGroup()
|
||||
gpu_options.register(model)
|
||||
else:
|
||||
logging.info("No extra torch devices need initialization, skipping initializing MultiGPU Work Units.")
|
||||
# TODO: only keep model clones that don't go 'past' the intended max_gpu count
|
||||
# multigpu_models = model.get_additional_models_with_key("multigpu")
|
||||
# new_multigpu_models = []
|
||||
# for m in multigpu_models:
|
||||
# if m.load_device in limit_extra_devices:
|
||||
# new_multigpu_models.append(m)
|
||||
# model.set_additional_models("multigpu", new_multigpu_models)
|
||||
# persist skip_devices for use in sampling code
|
||||
# if len(skip_devices) > 0 or "multigpu_skip_devices" in model.model_options:
|
||||
# model.model_options["multigpu_skip_devices"] = skip_devices
|
||||
return model
|
||||
|
||||
|
||||
LoadBalance = namedtuple('LoadBalance', ['work_per_device', 'idle_time'])
|
||||
def load_balance_devices(model_options: dict[str], total_work: int, return_idle_time=False, work_normalized: int=None):
|
||||
'Optimize work assigned to different devices, accounting for their relative speeds and splittable work.'
|
||||
opts_dict = model_options['multigpu_options']
|
||||
devices = list(model_options['multigpu_clones'].keys())
|
||||
speed_per_device = []
|
||||
work_per_device = []
|
||||
# get sum of each device's relative_speed
|
||||
total_speed = 0.0
|
||||
for opts in opts_dict.values():
|
||||
total_speed += opts['relative_speed']
|
||||
# get relative work for each device;
|
||||
# obtained by w = (W*r)/R
|
||||
for device in devices:
|
||||
relative_speed = opts_dict[device]['relative_speed']
|
||||
relative_work = (total_work*relative_speed) / total_speed
|
||||
speed_per_device.append(relative_speed)
|
||||
work_per_device.append(relative_work)
|
||||
# relative work must be expressed in whole numbers, but likely is a decimal;
|
||||
# perform rounding while maintaining total sum equal to total work (sum of relative works)
|
||||
work_per_device = round_preserved(work_per_device)
|
||||
dict_work_per_device = {}
|
||||
for device, relative_work in zip(devices, work_per_device):
|
||||
dict_work_per_device[device] = relative_work
|
||||
if not return_idle_time:
|
||||
return LoadBalance(dict_work_per_device, None)
|
||||
# divide relative work by relative speed to get estimated completion time of said work by each device;
|
||||
# time here is relative and does not correspond to real-world units
|
||||
completion_time = [w/r for w,r in zip(work_per_device, speed_per_device)]
|
||||
# calculate relative time spent by the devices waiting on each other after their work is completed
|
||||
idle_time = abs(min(completion_time) - max(completion_time))
|
||||
# if need to compare work idle time, need to normalize to a common total work
|
||||
if work_normalized:
|
||||
idle_time *= (work_normalized/total_work)
|
||||
|
||||
return LoadBalance(dict_work_per_device, idle_time)
|
||||
|
||||
def round_preserved(values: list[float]):
|
||||
'Round all values in a list, preserving the combined sum of values.'
|
||||
# get floor of values; casting to int does it too
|
||||
floored = [int(x) for x in values]
|
||||
total_floored = sum(floored)
|
||||
# get remainder to distribute
|
||||
remainder = round(sum(values)) - total_floored
|
||||
# pair values with fractional portions
|
||||
fractional = [(i, x-floored[i]) for i, x in enumerate(values)]
|
||||
# sort by fractional part in descending order
|
||||
fractional.sort(key=lambda x: x[1], reverse=True)
|
||||
# distribute the remainder
|
||||
for i in range(remainder):
|
||||
index = fractional[i][0]
|
||||
floored[index] += 1
|
||||
return floored
|
@ -3,6 +3,8 @@ from typing import Callable
|
||||
|
||||
class CallbacksMP:
|
||||
ON_CLONE = "on_clone"
|
||||
ON_DEEPCLONE_MULTIGPU = "on_deepclone_multigpu"
|
||||
ON_MATCH_MULTIGPU_CLONES = "on_match_multigpu_clones"
|
||||
ON_LOAD = "on_load_after"
|
||||
ON_DETACH = "on_detach_after"
|
||||
ON_CLEANUP = "on_cleanup"
|
||||
|
@ -1,7 +1,9 @@
|
||||
from __future__ import annotations
|
||||
import torch
|
||||
import uuid
|
||||
import comfy.model_management
|
||||
import comfy.conds
|
||||
import comfy.model_patcher
|
||||
import comfy.utils
|
||||
import comfy.hooks
|
||||
import comfy.patcher_extension
|
||||
@ -104,6 +106,46 @@ def cleanup_additional_models(models):
|
||||
if hasattr(m, 'cleanup'):
|
||||
m.cleanup()
|
||||
|
||||
def preprocess_multigpu_conds(conds: dict[str, list[dict[str]]], model: ModelPatcher, model_options: dict[str]):
|
||||
'''If multigpu acceleration required, creates deepclones of ControlNets and GLIGEN per device.'''
|
||||
multigpu_models: list[ModelPatcher] = model.get_additional_models_with_key("multigpu")
|
||||
if len(multigpu_models) == 0:
|
||||
return
|
||||
extra_devices = [x.load_device for x in multigpu_models]
|
||||
# handle controlnets
|
||||
controlnets: set[ControlBase] = set()
|
||||
for k in conds:
|
||||
for kk in conds[k]:
|
||||
if 'control' in kk:
|
||||
controlnets.add(kk['control'])
|
||||
if len(controlnets) > 0:
|
||||
# first, unload all controlnet clones
|
||||
for cnet in list(controlnets):
|
||||
cnet_models = cnet.get_models()
|
||||
for cm in cnet_models:
|
||||
comfy.model_management.unload_model_and_clones(cm, unload_additional_models=True)
|
||||
|
||||
# next, make sure each controlnet has a deepclone for all relevant devices
|
||||
for cnet in controlnets:
|
||||
curr_cnet = cnet
|
||||
while curr_cnet is not None:
|
||||
for device in extra_devices:
|
||||
if device not in curr_cnet.multigpu_clones:
|
||||
curr_cnet.deepclone_multigpu(device, autoregister=True)
|
||||
curr_cnet = curr_cnet.previous_controlnet
|
||||
# since all device clones are now present, recreate the linked list for cloned cnets per device
|
||||
for cnet in controlnets:
|
||||
curr_cnet = cnet
|
||||
while curr_cnet is not None:
|
||||
prev_cnet = curr_cnet.previous_controlnet
|
||||
for device in extra_devices:
|
||||
device_cnet = curr_cnet.get_instance_for_device(device)
|
||||
prev_device_cnet = None
|
||||
if prev_cnet is not None:
|
||||
prev_device_cnet = prev_cnet.get_instance_for_device(device)
|
||||
device_cnet.set_previous_controlnet(prev_device_cnet)
|
||||
curr_cnet = prev_cnet
|
||||
# potentially handle gligen - since not widely used, ignored for now
|
||||
|
||||
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
|
||||
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
|
||||
@ -113,14 +155,15 @@ def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None
|
||||
return executor.execute(model, noise_shape, conds, model_options=model_options)
|
||||
|
||||
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
|
||||
real_model: BaseModel = None
|
||||
model.match_multigpu_clones()
|
||||
preprocess_multigpu_conds(conds, model, model_options)
|
||||
models, inference_memory = get_additional_models(conds, model.model_dtype())
|
||||
models += get_additional_models_from_model_options(model_options)
|
||||
models += model.get_nested_additional_models() # TODO: does this require inference_memory update?
|
||||
memory_required = model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory
|
||||
minimum_memory_required = model.memory_required([noise_shape[0]] + list(noise_shape[1:])) + inference_memory
|
||||
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required)
|
||||
real_model = model.model
|
||||
real_model: BaseModel = model.model
|
||||
|
||||
return real_model, conds, models
|
||||
|
||||
@ -133,7 +176,7 @@ def cleanup_models(conds, models):
|
||||
|
||||
cleanup_additional_models(set(control_cleanup))
|
||||
|
||||
def prepare_model_patcher(model: 'ModelPatcher', conds, model_options: dict):
|
||||
def prepare_model_patcher(model: ModelPatcher, conds, model_options: dict):
|
||||
'''
|
||||
Registers hooks from conds.
|
||||
'''
|
||||
@ -166,3 +209,18 @@ def prepare_model_patcher(model: 'ModelPatcher', conds, model_options: dict):
|
||||
comfy.patcher_extension.merge_nested_dicts(to_load_options.setdefault(wc_name, {}), model_options["transformer_options"][wc_name],
|
||||
copy_dict1=False)
|
||||
return to_load_options
|
||||
|
||||
def prepare_model_patcher_multigpu_clones(model_patcher: ModelPatcher, loaded_models: list[ModelPatcher], model_options: dict):
|
||||
'''
|
||||
In case multigpu acceleration is enabled, prep ModelPatchers for each device.
|
||||
'''
|
||||
multigpu_patchers: list[ModelPatcher] = [x for x in loaded_models if x.is_multigpu_base_clone]
|
||||
if len(multigpu_patchers) > 0:
|
||||
multigpu_dict: dict[torch.device, ModelPatcher] = {}
|
||||
multigpu_dict[model_patcher.load_device] = model_patcher
|
||||
for x in multigpu_patchers:
|
||||
x.hook_patches = comfy.model_patcher.create_hook_patches_clone(model_patcher.hook_patches, copy_tuples=True)
|
||||
x.hook_mode = model_patcher.hook_mode # match main model's hook_mode
|
||||
multigpu_dict[x.load_device] = x
|
||||
model_options["multigpu_clones"] = multigpu_dict
|
||||
return multigpu_patchers
|
||||
|
@ -1,4 +1,6 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import comfy.model_management
|
||||
from .k_diffusion import sampling as k_diffusion_sampling
|
||||
from .extra_samplers import uni_pc
|
||||
from typing import TYPE_CHECKING, Callable, NamedTuple
|
||||
@ -18,6 +20,7 @@ import comfy.patcher_extension
|
||||
import comfy.hooks
|
||||
import scipy.stats
|
||||
import numpy
|
||||
import threading
|
||||
|
||||
|
||||
def add_area_dims(area, num_dims):
|
||||
@ -140,7 +143,7 @@ def can_concat_cond(c1, c2):
|
||||
|
||||
return cond_equal_size(c1.conditioning, c2.conditioning)
|
||||
|
||||
def cond_cat(c_list):
|
||||
def cond_cat(c_list, device=None):
|
||||
temp = {}
|
||||
for x in c_list:
|
||||
for k in x:
|
||||
@ -152,6 +155,8 @@ def cond_cat(c_list):
|
||||
for k in temp:
|
||||
conds = temp[k]
|
||||
out[k] = conds[0].concat(conds[1:])
|
||||
if device is not None and hasattr(out[k], 'to'):
|
||||
out[k] = out[k].to(device)
|
||||
|
||||
return out
|
||||
|
||||
@ -205,7 +210,9 @@ def calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Ten
|
||||
)
|
||||
return executor.execute(model, conds, x_in, timestep, model_options)
|
||||
|
||||
def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options):
|
||||
def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
|
||||
if 'multigpu_clones' in model_options:
|
||||
return _calc_cond_batch_multigpu(model, conds, x_in, timestep, model_options)
|
||||
out_conds = []
|
||||
out_counts = []
|
||||
# separate conds by matching hooks
|
||||
@ -237,7 +244,7 @@ def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Te
|
||||
if has_default_conds:
|
||||
finalize_default_conds(model, hooked_to_run, default_conds, x_in, timestep, model_options)
|
||||
|
||||
model.current_patcher.prepare_state(timestep)
|
||||
model.current_patcher.prepare_state(timestep, model_options)
|
||||
|
||||
# run every hooked_to_run separately
|
||||
for hooks, to_run in hooked_to_run.items():
|
||||
@ -339,6 +346,190 @@ def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Te
|
||||
|
||||
return out_conds
|
||||
|
||||
def _calc_cond_batch_multigpu(model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
|
||||
out_conds = []
|
||||
out_counts = []
|
||||
# separate conds by matching hooks
|
||||
hooked_to_run: dict[comfy.hooks.HookGroup,list[tuple[tuple,int]]] = {}
|
||||
default_conds = []
|
||||
has_default_conds = False
|
||||
|
||||
output_device = x_in.device
|
||||
|
||||
for i in range(len(conds)):
|
||||
out_conds.append(torch.zeros_like(x_in))
|
||||
out_counts.append(torch.ones_like(x_in) * 1e-37)
|
||||
|
||||
cond = conds[i]
|
||||
default_c = []
|
||||
if cond is not None:
|
||||
for x in cond:
|
||||
if 'default' in x:
|
||||
default_c.append(x)
|
||||
has_default_conds = True
|
||||
continue
|
||||
p = get_area_and_mult(x, x_in, timestep)
|
||||
if p is None:
|
||||
continue
|
||||
if p.hooks is not None:
|
||||
model.current_patcher.prepare_hook_patches_current_keyframe(timestep, p.hooks, model_options)
|
||||
hooked_to_run.setdefault(p.hooks, list())
|
||||
hooked_to_run[p.hooks] += [(p, i)]
|
||||
default_conds.append(default_c)
|
||||
|
||||
if has_default_conds:
|
||||
finalize_default_conds(model, hooked_to_run, default_conds, x_in, timestep, model_options)
|
||||
|
||||
model.current_patcher.prepare_state(timestep, model_options)
|
||||
|
||||
devices = [dev_m for dev_m in model_options['multigpu_clones'].keys()]
|
||||
device_batched_hooked_to_run: dict[torch.device, list[tuple[comfy.hooks.HookGroup, tuple]]] = {}
|
||||
|
||||
total_conds = 0
|
||||
for to_run in hooked_to_run.values():
|
||||
total_conds += len(to_run)
|
||||
conds_per_device = max(1, math.ceil(total_conds//len(devices)))
|
||||
index_device = 0
|
||||
current_device = devices[index_device]
|
||||
# run every hooked_to_run separately
|
||||
for hooks, to_run in hooked_to_run.items():
|
||||
while len(to_run) > 0:
|
||||
current_device = devices[index_device % len(devices)]
|
||||
batched_to_run = device_batched_hooked_to_run.setdefault(current_device, [])
|
||||
# keep track of conds currently scheduled onto this device
|
||||
batched_to_run_length = 0
|
||||
for btr in batched_to_run:
|
||||
batched_to_run_length += len(btr[1])
|
||||
|
||||
first = to_run[0]
|
||||
first_shape = first[0][0].shape
|
||||
to_batch_temp = []
|
||||
# make sure not over conds_per_device limit when creating temp batch
|
||||
for x in range(len(to_run)):
|
||||
if can_concat_cond(to_run[x][0], first[0]) and len(to_batch_temp) < (conds_per_device - batched_to_run_length):
|
||||
to_batch_temp += [x]
|
||||
|
||||
to_batch_temp.reverse()
|
||||
to_batch = to_batch_temp[:1]
|
||||
|
||||
free_memory = model_management.get_free_memory(current_device)
|
||||
for i in range(1, len(to_batch_temp) + 1):
|
||||
batch_amount = to_batch_temp[:len(to_batch_temp)//i]
|
||||
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
|
||||
if model.memory_required(input_shape) * 1.5 < free_memory:
|
||||
to_batch = batch_amount
|
||||
break
|
||||
conds_to_batch = []
|
||||
for x in to_batch:
|
||||
conds_to_batch.append(to_run.pop(x))
|
||||
batched_to_run_length += len(conds_to_batch)
|
||||
|
||||
batched_to_run.append((hooks, conds_to_batch))
|
||||
if batched_to_run_length >= conds_per_device:
|
||||
index_device += 1
|
||||
|
||||
thread_result = collections.namedtuple('thread_result', ['output', 'mult', 'area', 'batch_chunks', 'cond_or_uncond'])
|
||||
def _handle_batch(device: torch.device, batch_tuple: tuple[comfy.hooks.HookGroup, tuple], results: list[thread_result]):
|
||||
model_current: BaseModel = model_options["multigpu_clones"][device].model
|
||||
# run every hooked_to_run separately
|
||||
with torch.no_grad():
|
||||
for hooks, to_batch in batch_tuple:
|
||||
input_x = []
|
||||
mult = []
|
||||
c = []
|
||||
cond_or_uncond = []
|
||||
uuids = []
|
||||
area = []
|
||||
control: ControlBase = None
|
||||
patches = None
|
||||
for x in to_batch:
|
||||
o = x
|
||||
p = o[0]
|
||||
input_x.append(p.input_x)
|
||||
mult.append(p.mult)
|
||||
c.append(p.conditioning)
|
||||
area.append(p.area)
|
||||
cond_or_uncond.append(o[1])
|
||||
uuids.append(p.uuid)
|
||||
control = p.control
|
||||
patches = p.patches
|
||||
|
||||
batch_chunks = len(cond_or_uncond)
|
||||
input_x = torch.cat(input_x).to(device)
|
||||
c = cond_cat(c, device=device)
|
||||
timestep_ = torch.cat([timestep.to(device)] * batch_chunks)
|
||||
|
||||
transformer_options = model_current.current_patcher.apply_hooks(hooks=hooks)
|
||||
if 'transformer_options' in model_options:
|
||||
transformer_options = comfy.patcher_extension.merge_nested_dicts(transformer_options,
|
||||
model_options['transformer_options'],
|
||||
copy_dict1=False)
|
||||
|
||||
if patches is not None:
|
||||
# TODO: replace with merge_nested_dicts function
|
||||
if "patches" in transformer_options:
|
||||
cur_patches = transformer_options["patches"].copy()
|
||||
for p in patches:
|
||||
if p in cur_patches:
|
||||
cur_patches[p] = cur_patches[p] + patches[p]
|
||||
else:
|
||||
cur_patches[p] = patches[p]
|
||||
transformer_options["patches"] = cur_patches
|
||||
else:
|
||||
transformer_options["patches"] = patches
|
||||
|
||||
transformer_options["cond_or_uncond"] = cond_or_uncond[:]
|
||||
transformer_options["uuids"] = uuids[:]
|
||||
transformer_options["sigmas"] = timestep
|
||||
transformer_options["sample_sigmas"] = transformer_options["sample_sigmas"].to(device)
|
||||
transformer_options["multigpu_thread_device"] = device
|
||||
|
||||
cast_transformer_options(transformer_options, device=device)
|
||||
c['transformer_options'] = transformer_options
|
||||
|
||||
if control is not None:
|
||||
device_control = control.get_instance_for_device(device)
|
||||
c['control'] = device_control.get_control(input_x, timestep_, c, len(cond_or_uncond), transformer_options)
|
||||
|
||||
if 'model_function_wrapper' in model_options:
|
||||
output = model_options['model_function_wrapper'](model_current.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).to(output_device).chunk(batch_chunks)
|
||||
else:
|
||||
output = model_current.apply_model(input_x, timestep_, **c).to(output_device).chunk(batch_chunks)
|
||||
results.append(thread_result(output, mult, area, batch_chunks, cond_or_uncond))
|
||||
|
||||
|
||||
results: list[thread_result] = []
|
||||
threads: list[threading.Thread] = []
|
||||
for device, batch_tuple in device_batched_hooked_to_run.items():
|
||||
new_thread = threading.Thread(target=_handle_batch, args=(device, batch_tuple, results))
|
||||
threads.append(new_thread)
|
||||
new_thread.start()
|
||||
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
|
||||
for output, mult, area, batch_chunks, cond_or_uncond in results:
|
||||
for o in range(batch_chunks):
|
||||
cond_index = cond_or_uncond[o]
|
||||
a = area[o]
|
||||
if a is None:
|
||||
out_conds[cond_index] += output[o] * mult[o]
|
||||
out_counts[cond_index] += mult[o]
|
||||
else:
|
||||
out_c = out_conds[cond_index]
|
||||
out_cts = out_counts[cond_index]
|
||||
dims = len(a) // 2
|
||||
for i in range(dims):
|
||||
out_c = out_c.narrow(i + 2, a[i + dims], a[i])
|
||||
out_cts = out_cts.narrow(i + 2, a[i + dims], a[i])
|
||||
out_c += output[o] * mult[o]
|
||||
out_cts += mult[o]
|
||||
|
||||
for i in range(len(out_conds)):
|
||||
out_conds[i] /= out_counts[i]
|
||||
|
||||
return out_conds
|
||||
|
||||
def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): #TODO: remove
|
||||
logging.warning("WARNING: The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.")
|
||||
return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options))
|
||||
@ -636,6 +827,8 @@ def pre_run_control(model, conds):
|
||||
percent_to_timestep_function = lambda a: s.percent_to_sigma(a)
|
||||
if 'control' in x:
|
||||
x['control'].pre_run(model, percent_to_timestep_function)
|
||||
for device_cnet in x['control'].multigpu_clones.values():
|
||||
device_cnet.pre_run(model, percent_to_timestep_function)
|
||||
|
||||
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
|
||||
cond_cnets = []
|
||||
@ -878,7 +1071,9 @@ def cast_to_load_options(model_options: dict[str], device=None, dtype=None):
|
||||
to_load_options = model_options.get("to_load_options", None)
|
||||
if to_load_options is None:
|
||||
return
|
||||
cast_transformer_options(to_load_options, device, dtype)
|
||||
|
||||
def cast_transformer_options(transformer_options: dict[str], device=None, dtype=None):
|
||||
casts = []
|
||||
if device is not None:
|
||||
casts.append(device)
|
||||
@ -887,18 +1082,17 @@ def cast_to_load_options(model_options: dict[str], device=None, dtype=None):
|
||||
# if nothing to apply, do nothing
|
||||
if len(casts) == 0:
|
||||
return
|
||||
|
||||
# try to call .to on patches
|
||||
if "patches" in to_load_options:
|
||||
patches = to_load_options["patches"]
|
||||
if "patches" in transformer_options:
|
||||
patches = transformer_options["patches"]
|
||||
for name in patches:
|
||||
patch_list = patches[name]
|
||||
for i in range(len(patch_list)):
|
||||
if hasattr(patch_list[i], "to"):
|
||||
for cast in casts:
|
||||
patch_list[i] = patch_list[i].to(cast)
|
||||
if "patches_replace" in to_load_options:
|
||||
patches = to_load_options["patches_replace"]
|
||||
if "patches_replace" in transformer_options:
|
||||
patches = transformer_options["patches_replace"]
|
||||
for name in patches:
|
||||
patch_list = patches[name]
|
||||
for k in patch_list:
|
||||
@ -908,8 +1102,8 @@ def cast_to_load_options(model_options: dict[str], device=None, dtype=None):
|
||||
# try to call .to on any wrappers/callbacks
|
||||
wrappers_and_callbacks = ["wrappers", "callbacks"]
|
||||
for wc_name in wrappers_and_callbacks:
|
||||
if wc_name in to_load_options:
|
||||
wc: dict[str, list] = to_load_options[wc_name]
|
||||
if wc_name in transformer_options:
|
||||
wc: dict[str, list] = transformer_options[wc_name]
|
||||
for wc_dict in wc.values():
|
||||
for wc_list in wc_dict.values():
|
||||
for i in range(len(wc_list)):
|
||||
@ -917,7 +1111,6 @@ def cast_to_load_options(model_options: dict[str], device=None, dtype=None):
|
||||
for cast in casts:
|
||||
wc_list[i] = wc_list[i].to(cast)
|
||||
|
||||
|
||||
class CFGGuider:
|
||||
def __init__(self, model_patcher: ModelPatcher):
|
||||
self.model_patcher = model_patcher
|
||||
@ -963,6 +1156,8 @@ class CFGGuider:
|
||||
self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds, self.model_options)
|
||||
device = self.model_patcher.load_device
|
||||
|
||||
multigpu_patchers = comfy.sampler_helpers.prepare_model_patcher_multigpu_clones(self.model_patcher, self.loaded_models, self.model_options)
|
||||
|
||||
if denoise_mask is not None:
|
||||
denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device)
|
||||
|
||||
@ -973,9 +1168,13 @@ class CFGGuider:
|
||||
|
||||
try:
|
||||
self.model_patcher.pre_run()
|
||||
for multigpu_patcher in multigpu_patchers:
|
||||
multigpu_patcher.pre_run()
|
||||
output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
|
||||
finally:
|
||||
self.model_patcher.cleanup()
|
||||
for multigpu_patcher in multigpu_patchers:
|
||||
multigpu_patcher.cleanup()
|
||||
|
||||
comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models)
|
||||
del self.inner_model
|
||||
|
86
comfy_extras/nodes_multigpu.py
Normal file
86
comfy_extras/nodes_multigpu.py
Normal file
@ -0,0 +1,86 @@
|
||||
from __future__ import annotations
|
||||
from inspect import cleandoc
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
if TYPE_CHECKING:
|
||||
from comfy.model_patcher import ModelPatcher
|
||||
import comfy.multigpu
|
||||
|
||||
|
||||
class MultiGPUWorkUnitsNode:
|
||||
"""
|
||||
Prepares model to have sampling accelerated via splitting work units.
|
||||
|
||||
Should be placed after nodes that modify the model object itself, such as compile or attention-switch nodes.
|
||||
|
||||
Other than those exceptions, this node can be placed in any order.
|
||||
"""
|
||||
|
||||
NodeId = "MultiGPU_WorkUnits"
|
||||
NodeName = "MultiGPU Work Units"
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"model": ("MODEL",),
|
||||
"max_gpus" : ("INT", {"default": 8, "min": 1, "step": 1}),
|
||||
},
|
||||
"optional": {
|
||||
"gpu_options": ("GPU_OPTIONS",)
|
||||
}
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "init_multigpu"
|
||||
CATEGORY = "advanced/multigpu"
|
||||
DESCRIPTION = cleandoc(__doc__)
|
||||
|
||||
def init_multigpu(self, model: ModelPatcher, max_gpus: int, gpu_options: comfy.multigpu.GPUOptionsGroup=None):
|
||||
model = comfy.multigpu.create_multigpu_deepclones(model, max_gpus, gpu_options, reuse_loaded=True)
|
||||
return (model,)
|
||||
|
||||
class MultiGPUOptionsNode:
|
||||
"""
|
||||
Select the relative speed of GPUs in the special case they have significantly different performance from one another.
|
||||
"""
|
||||
|
||||
NodeId = "MultiGPU_Options"
|
||||
NodeName = "MultiGPU Options"
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"device_index": ("INT", {"default": 0, "min": 0, "max": 64}),
|
||||
"relative_speed": ("FLOAT", {"default": 1.0, "min": 0.0, "step": 0.01})
|
||||
},
|
||||
"optional": {
|
||||
"gpu_options": ("GPU_OPTIONS",)
|
||||
}
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("GPU_OPTIONS",)
|
||||
FUNCTION = "create_gpu_options"
|
||||
CATEGORY = "advanced/multigpu"
|
||||
DESCRIPTION = cleandoc(__doc__)
|
||||
|
||||
def create_gpu_options(self, device_index: int, relative_speed: float, gpu_options: comfy.multigpu.GPUOptionsGroup=None):
|
||||
if not gpu_options:
|
||||
gpu_options = comfy.multigpu.GPUOptionsGroup()
|
||||
gpu_options.clone()
|
||||
|
||||
opt = comfy.multigpu.GPUOptions(device_index=device_index, relative_speed=relative_speed)
|
||||
gpu_options.add(opt)
|
||||
|
||||
return (gpu_options,)
|
||||
|
||||
|
||||
node_list = [
|
||||
MultiGPUWorkUnitsNode,
|
||||
MultiGPUOptionsNode
|
||||
]
|
||||
NODE_CLASS_MAPPINGS = {}
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {}
|
||||
|
||||
for node in node_list:
|
||||
NODE_CLASS_MAPPINGS[node.NodeId] = node
|
||||
NODE_DISPLAY_NAME_MAPPINGS[node.NodeId] = node.NodeName
|
Loading…
Reference in New Issue
Block a user