mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Add InpaintModelConditioning node.
This is an alternative to VAE Encode for inpaint that should work with lower denoise. This is a different take on #2501
This commit is contained in:
parent
b4e915e745
commit
10f2609fdd
@ -100,11 +100,29 @@ class BaseModel(torch.nn.Module):
|
||||
if self.inpaint_model:
|
||||
concat_keys = ("mask", "masked_image")
|
||||
cond_concat = []
|
||||
denoise_mask = kwargs.get("denoise_mask", None)
|
||||
latent_image = kwargs.get("latent_image", None)
|
||||
denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
|
||||
concat_latent_image = kwargs.get("concat_latent_image", None)
|
||||
if concat_latent_image is None:
|
||||
concat_latent_image = kwargs.get("latent_image", None)
|
||||
else:
|
||||
concat_latent_image = self.process_latent_in(concat_latent_image)
|
||||
|
||||
noise = kwargs.get("noise", None)
|
||||
device = kwargs["device"]
|
||||
|
||||
if concat_latent_image.shape[1:] != noise.shape[1:]:
|
||||
concat_latent_image = utils.common_upscale(concat_latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
|
||||
concat_latent_image = utils.resize_to_batch_size(concat_latent_image, noise.shape[0])
|
||||
|
||||
if len(denoise_mask.shape) == len(noise.shape):
|
||||
denoise_mask = denoise_mask[:,:1]
|
||||
|
||||
denoise_mask = denoise_mask.reshape((-1, 1, denoise_mask.shape[-2], denoise_mask.shape[-1]))
|
||||
if denoise_mask.shape[-2:] != noise.shape[-2:]:
|
||||
denoise_mask = utils.common_upscale(denoise_mask, noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
denoise_mask = utils.resize_to_batch_size(denoise_mask.round(), noise.shape[0])
|
||||
|
||||
def blank_inpaint_image_like(latent_image):
|
||||
blank_image = torch.ones_like(latent_image)
|
||||
# these are the values for "zero" in pixel space translated to latent space
|
||||
@ -117,9 +135,9 @@ class BaseModel(torch.nn.Module):
|
||||
for ck in concat_keys:
|
||||
if denoise_mask is not None:
|
||||
if ck == "mask":
|
||||
cond_concat.append(denoise_mask[:,:1].to(device))
|
||||
cond_concat.append(denoise_mask.to(device))
|
||||
elif ck == "masked_image":
|
||||
cond_concat.append(latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
|
||||
cond_concat.append(concat_latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
|
||||
else:
|
||||
if ck == "mask":
|
||||
cond_concat.append(torch.ones_like(noise)[:,:1])
|
||||
|
62
nodes.py
62
nodes.py
@ -359,6 +359,62 @@ class VAEEncodeForInpaint:
|
||||
|
||||
return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
|
||||
|
||||
|
||||
class InpaintModelConditioning:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"positive": ("CONDITIONING", ),
|
||||
"negative": ("CONDITIONING", ),
|
||||
"vae": ("VAE", ),
|
||||
"pixels": ("IMAGE", ),
|
||||
"mask": ("MASK", ),
|
||||
}}
|
||||
|
||||
RETURN_TYPES = ("CONDITIONING","CONDITIONING","LATENT")
|
||||
RETURN_NAMES = ("positive", "negative", "latent")
|
||||
FUNCTION = "encode"
|
||||
|
||||
CATEGORY = "conditioning/inpaint"
|
||||
|
||||
def encode(self, positive, negative, pixels, vae, mask):
|
||||
x = (pixels.shape[1] // 8) * 8
|
||||
y = (pixels.shape[2] // 8) * 8
|
||||
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
|
||||
|
||||
orig_pixels = pixels
|
||||
pixels = orig_pixels.clone()
|
||||
if pixels.shape[1] != x or pixels.shape[2] != y:
|
||||
x_offset = (pixels.shape[1] % 8) // 2
|
||||
y_offset = (pixels.shape[2] % 8) // 2
|
||||
pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
|
||||
mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
|
||||
|
||||
m = (1.0 - mask.round()).squeeze(1)
|
||||
for i in range(3):
|
||||
pixels[:,:,:,i] -= 0.5
|
||||
pixels[:,:,:,i] *= m
|
||||
pixels[:,:,:,i] += 0.5
|
||||
concat_latent = vae.encode(pixels)
|
||||
orig_latent = vae.encode(orig_pixels)
|
||||
|
||||
out_latent = {}
|
||||
|
||||
out_latent["samples"] = orig_latent
|
||||
out_latent["noise_mask"] = mask
|
||||
|
||||
out = []
|
||||
for conditioning in [positive, negative]:
|
||||
c = []
|
||||
for t in conditioning:
|
||||
d = t[1].copy()
|
||||
d["concat_latent_image"] = concat_latent
|
||||
d["concat_mask"] = mask
|
||||
n = [t[0], d]
|
||||
c.append(n)
|
||||
out.append(c)
|
||||
return (out[0], out[1], out_latent)
|
||||
|
||||
|
||||
class SaveLatent:
|
||||
def __init__(self):
|
||||
self.output_dir = folder_paths.get_output_directory()
|
||||
@ -1628,10 +1684,11 @@ class ImagePadForOutpaint:
|
||||
def expand_image(self, image, left, top, right, bottom, feathering):
|
||||
d1, d2, d3, d4 = image.size()
|
||||
|
||||
new_image = torch.zeros(
|
||||
new_image = torch.ones(
|
||||
(d1, d2 + top + bottom, d3 + left + right, d4),
|
||||
dtype=torch.float32,
|
||||
)
|
||||
) * 0.5
|
||||
|
||||
new_image[:, top:top + d2, left:left + d3, :] = image
|
||||
|
||||
mask = torch.ones(
|
||||
@ -1723,6 +1780,7 @@ NODE_CLASS_MAPPINGS = {
|
||||
"unCLIPCheckpointLoader": unCLIPCheckpointLoader,
|
||||
"GLIGENLoader": GLIGENLoader,
|
||||
"GLIGENTextBoxApply": GLIGENTextBoxApply,
|
||||
"InpaintModelConditioning": InpaintModelConditioning,
|
||||
|
||||
"CheckpointLoader": CheckpointLoader,
|
||||
"DiffusersLoader": DiffusersLoader,
|
||||
|
Loading…
Reference in New Issue
Block a user